
GRIFO_Test_Environment_Analysis.md 2026-01-30

1 / 18

GRIFO Test Environment - Technical Analysis
Document Version: 1.0
Date: 2026-01-29
Purpose: Technical documentation of the GRIFO automatic test environment architecture

Table of Contents
1. Environment Overview
2. Directory Structure
3. Core Components
4. 1553 Interface Architecture
5. Serial Communication
6. Power Control
7. Test Framework
8. Python Environment
9. Message Protocol

10. Simulation Mode

Environment Overview
The GRIFO test environment is a Python-based automated test system for the GRIFO-F/TH radar system. It
provides:

1553 bus interface for radar communication (via native C++ library)
Serial terminal interface for radar diagnostics monitoring
Power control via BrainBox interface
PDF report generation for test results
Comprehensive logging and data recording

Key Technologies

Python 3.x (local installation in environment)
SWIG bindings for native C++ 1553 library
Serial communication (pyserial)
PDF generation (fpdf2)
Custom test framework (leo_grifo_* modules)

Directory Structure

GrifoAutomaticTestEnv/
│
├── PlatformSimulator/ # Native 1553 interface components
│ ├── bin/

GRIFO_Test_Environment_Analysis.md 2026-01-30

2 / 18

│ │ ├── interpreter.py # SWIG-generated Python wrapper
│ │ ├── _interpreter.pyd # Native C++ DLL (1553 hardware driver)
│ │ └── help/ # Documentation files (.chm)
│ └── (additional platform files)
│
├── TestEnvironment/
│ ├── env/ # Python libraries and utilities
│ │ ├── leo_grifo_1553.py # 1553 interface wrapper
│ │ ├── leo_grifo_terminal.py # Serial terminal handler
│ │ ├── leo_grifo_io_box.py # Power control (BrainBox)
│ │ ├── leo_grifo_common.py # Common utilities
│ │ ├── leo_grifo_core.py # Core framework (recorder)
│ │ ├── leo_grifo_test_report.py # PDF report generation
│ │ ├── test_common_function.py # Test helper functions
│ │ ├── logger.py # Logging setup
│ │ ├── site-packages/ # Local Python packages
│ │ │ ├── defusedxml/
│ │ │ ├── fpdf/
│ │ │ ├── PIL/
│ │ │ ├── pyvisa/
│ │ │ ├── serial/
│ │ │ └── ...
│ │ └── __pycache__/
│ │
│ ├── scripts/ # Test scripts
│ │ ├── __init__.py # Environment setup (sys.path config)
│ │ ├── GRIFO_M_PBIT.py # Main PBIT test script
│ │ ├── GRIFO_M_PBIT_mock.py # Simulation mode mock (NEW)
│ │ └── (other test scripts)
│ │
│ ├── json/ # Configuration files
│ │ └── (test configurations)
│ │
│ ├── LOG/ # Test execution logs
│ └── pdf_reports/ # Generated test reports
│
├── Documents/ # Project documentation
└── run_batch.bat # Batch execution scripts

Core Components

1. __init__.py - Environment Bootstrap

Location: TestEnvironment/scripts/__init__.py

Purpose: Configure Python import paths for test scripts

import os, sys
LIB_DIR = os.path.join(os.path.dirname(__file__), '..', 'env')

GRIFO_Test_Environment_Analysis.md 2026-01-30

3 / 18

sys.path.append(LIB_DIR)
sys.path.append(os.path.join(LIB_DIR, 'site-packages'))

Key Function:

Adds env/ to Python path (for leo_grifo_* modules)
Adds env/site-packages/ to Python path (for dependencies)
Enables relative imports from test scripts

1553 Interface Architecture

Native Layer: interpreter Module

Location: PlatformSimulator/bin/interpreter.py + _interpreter.pyd

Type: SWIG-generated Python bindings for C++ library

Key Classes:

PyInterfaceManager - Main interface factory
Grifo 1553 Interface - Specific 1553 hardware interface

Functionality:

Low-level 1553 bus communication
Message transmission/reception
Field access and manipulation
Hardware-specific drivers

Python Wrapper: leo_grifo_1553.py

Location: TestEnvironment/env/leo_grifo_1553.py

Class: GrifoInstrumentInterface(TestCommonInterface, ABC)

Key Methods:

def __init__(self, _timeout=0.5):
 """Initialize interface and get hardware reference"""
 mgr = interpreter.PyInterfaceManager()
 index = mgr.indexOf('Grifo 1553 Interface')
 self.grifo_1553 = mgr.getInterface(index)
 self.run(True) # Start message reception

def check(self, expected_result, *fields, **kwargs) -> (bool, Any, AnyStr):
 """
 Verify message field value with optional timing and retry logic.

 Args:
 expected_result: Expected value or range (tuple for range)

GRIFO_Test_Environment_Analysis.md 2026-01-30

4 / 18

 *fields: (message_name, field_name)
 **kwargs:
 - timeout: Max wait time for message reception
 - step: Polling interval for retry logic

 Returns:
 (success: bool, value: Any, error: str)
 """

def set(self, value, *fields, **kwargs) -> (bool, AnyStr):
 """
 Assign value to TX message field and optionally send.

 Args:
 value: Field value (None = send last committed message)
 *fields: (message_name, field_name)
 **kwargs:
 - commitChanges: Send message after assignment
 - errorInject: Inject CRC error for testing
 """

def get(self, *fields, **kwargs) -> (Any, AnyStr):
 """
 Read message field value.

 Args:
 *fields: (message_name, field_name)

 Returns:
 (value: Any, error: str)
 """

def getInterface(self):
 """Return raw 1553 interface object for advanced operations"""
 return self.grifo_1553

def run(self, enable: bool):
 """Start/stop message reception"""
 if enable:
 self.grifo_1553.start()
 else:
 self.grifo_1553.stop()

Global Singleton:

theGrifo1553 = GrifoInstrumentInterface(0.2)

Usage Pattern in Tests:

GRIFO_Test_Environment_Analysis.md 2026-01-30

5 / 18

from leo_grifo_1553 import theGrifo1553

Get interface object
interface = theGrifo1553.getInterface()

Read message counter
count =
interface.getSingleMessageReceivedSz("B6_MsgRdrSettingsAndParametersTellback")

Read field value
value = interface.getMessageFieldValue("B6_MsgRdrSettingsAndParametersTellback",
 "radar_health_status_...")

Check field with automatic retry logic
success, value, error = theGrifo1553.check(
 "false", # Expected value
 "B6_MsgRdrSettingsAndParametersTellback",
 "radar_health_status_...",
 timeout=5.0, # Wait up to 5s for message
 step=0.1 # Poll every 100ms
)

Serial Communication

Base Class: Terminal2Serial

Location: TestEnvironment/env/leo_terminal_serial.py

Purpose: Generic serial communication wrapper using pyserial

Features:

Configurable port, baud rate, stop bits, parity
Line-feed mode for text-based protocols
Callback-based message reception

GRIFO Implementation: GrifoSerialTerminal

Location: TestEnvironment/env/leo_grifo_terminal.py

Class: GrifoSerialTerminal(Terminal2Serial)

Configuration: Loaded from JSON config

{
 "serial_terminal": {
 "port": "COM2",
 "speed": "9600",
 "stop_bit": "1",
 "bytesize": 8,

GRIFO_Test_Environment_Analysis.md 2026-01-30

6 / 18

 "parity": "N",
 "mode": "EXPECT_LF"
 }
}

Message Pattern Detection:

%%E - Error messages (logged as critical)
%%F - Fatal messages (logged as critical)
RECYCLE - System restart keyword (case-insensitive)

Statistics Tracking:

self._serial_stats = {
 'total_messages': 0, # Total messages received
 'error_messages': 0, # %%E count
 'fatal_messages': 0, # %%F count
 'recycle_count': 0, # RECYCLE keyword occurrences
 'error_details': [], # [(timestamp, message), ...]
 'fatal_details': [], # [(timestamp, message), ...]
 'recycle_details': [], # [(timestamp, message), ...]
}

API Methods:

def connect(self):
 """Connect to serial port"""

def disconnect(self):
 """Disconnect from serial port"""

def get_serial_statistics(self) -> dict:
 """Get current statistics snapshot"""
 return dict copy of _serial_stats

def reset_serial_statistics(self):
 """Reset statistics for new test run"""

Usage Pattern:

import leo_grifo_terminal

terminal = leo_grifo_terminal.GrifoSerialTerminal()
terminal.connect()

At test run start
terminal.reset_serial_statistics()

GRIFO_Test_Environment_Analysis.md 2026-01-30

7 / 18

During test execution
(messages received automatically in background)

At test run end
stats = terminal.get_serial_statistics()
print(f"Errors: {stats['error_messages']}")
print(f"Fatal: {stats['fatal_messages']}")
print(f"Recycles: {stats['recycle_count']}")

terminal.disconnect()

Power Control

BrainBox Interface: leo_grifo_io_box.py

Location: TestEnvironment/env/leo_grifo_io_box.py

Purpose: Control radar power via external control box

Global Singleton:

theBrainBox = BrainBoxInterface()

Usage (via helper functions):

from test_common_function import power_grifo_on, power_grifo_off

Power on radar with 3s wait
power_grifo_on(wait_after=3)

Power off radar
power_grifo_off(wait_after=0)

Implementation:

def power_grifo_on(wait_after=0):
 setValue(theBrainBox, True, 'MAIN_POWER')
 ret, err = check(theBrainBox, 1, 'MAIN_POWER')
 time.sleep(wait_after)
 return ret

def power_grifo_off(wait_after=0):
 setValue(theBrainBox, False, 'MAIN_POWER')
 ret, err = check(theBrainBox, 0, 'MAIN_POWER', timeout=0.1)

GRIFO_Test_Environment_Analysis.md 2026-01-30

8 / 18

 time.sleep(wait_after)
 return ret

Test Framework

Test Report: leo_grifo_test_report.py

Class: testReport

Methods:

def __init__(self, test_name):
 """Initialize report with test name"""

def open_session(self, session_name):
 """Start new test session section"""

def close_session(self):
 """End current session"""

def add_comment(self, comment):
 """Add text to report"""

def generate_pdf(self):
 """Generate final PDF report"""

Usage Pattern:

from leo_grifo_test_report import testReport

report = testReport(sys.argv[0])

report.open_session('Test Initialization')
report.add_comment('Starting test...')
... test operations ...
report.close_session()

report.generate_pdf()

Common Functions: test_common_function.py

Key Utilities:

def check(interface, expected, *fields, **kwargs):
 """Universal check function for any interface"""

GRIFO_Test_Environment_Analysis.md 2026-01-30

9 / 18

def setValue(interface, value, *fields, **kwargs):
 """Universal set function for any interface"""

def get_test_name(file):
 """Extract test name from script file path"""

def startTest() -> datetime:
 """Log test start time"""

def stopTest() -> datetime:
 """Log test stop time"""

Core Recorder: leo_grifo_core.py

Global Object:

theRecorder = DataRecorder()

Purpose: Record test steps for later analysis/playback

Methods:

def add_step(self, data, success, description, error):
 """Record test step with outcome"""

def logStart(self, verbosity, log_dir):
 """Start recording session"""

def logStop(self):
 """Stop recording session"""

Python Environment

Local Packages (site-packages)

Location: TestEnvironment/env/site-packages/

Installed Packages:

defusedxml - Secure XML parsing
fpdf2 - PDF generation
Pillow (PIL) - Image processing
pyvisa - Instrument control (if needed)
pyserial - Serial communication

Python Version: Python 3.x (exact version determined by environment)

GRIFO_Test_Environment_Analysis.md 2026-01-30

10 / 18

Import Resolution Order:

1. Test script directory
2. env/ directory (leo_grifo_* modules)
3. env/site-packages/ (dependencies)
4. System Python paths

Message Protocol

1553 Message Structure

Message Types Used in Tests:

B6: B6_MsgRdrSettingsAndParametersTellback

Direction: RX (from radar to test system)
Purpose: Radar settings confirmation + LRU status
Frequency: 10 Hz (100ms period)
Key Fields:

bit_report_available - BIT completion flag
radar_fail_status - Overall radar health (enum)
array_status, pedestal_status, etc. - LRU status (inverse logic)
pressurization_status, temperature alarms

LRU Status Fields (12 total):

Inverse logic: false = OK, true = FAIL
"array_status"
"pedestal_status"
"processor_status"
"receiver_status"
"rx_front_end_status"
"servoloop_status"
"trasmitter_status"
"pressurization_status"
"processor_over_temperature_alarm"
"servoloop_over_temperature_alarm"
"trasmitter_over_temperature_alarm"

Enum: RDR_OK / RDR_FAIL
"radar_fail_status"

B8: B8_MsgBitReport

Direction: RX (from radar to test system)
Purpose: Detailed BIT diagnostic results
Frequency: 10 Hz (100ms period)
Key Field Categories:

GRIFO_Test_Environment_Analysis.md 2026-01-30

11 / 18

Degradation conditions (12 fields)
SRU failure locations (43 fields across 6 subsystems)
Test results (118 fields across 10 test types)

Field Categories:

1. Degradation Conditions (12 fields)

System-level failures (BCN, groups, total radar fail)

2. SRU Failure Locations (43 fields)

Pedestal (5 SRUs)
Processor (14 SRUs)
Receiver (7 SRUs)
RX Frontend (6 SRUs)
Servoloop (3 SRUs)
Transmitter (8 SRUs)

3. Test Results (118 fields)

AGC tests (11)
Data Processor tests (14)
Integrated System tests (15)
Post Processor tests (8)
Power Supply tests (2)
Receiver/RX Frontend tests (7)
RX Module tests (6)
Servoloop tests (15)
Signal Processor tests (14)
Transmitter tests (26)

B9: Message (target data)

Direction: RX (from radar)
Purpose: Target track data
Frequency: 50 Hz (20ms period)

Message Field Naming Convention

Pattern: {subsystem}_{structure}_{field_name}

Example:

radar_health_status_and_bit_report_valid_RdrHealthStatusAndBitReport_processor_sta
tus
│ │
└─ Subsystem/Group └─ Field
name

GRIFO_Test_Environment_Analysis.md 2026-01-30

12 / 18

Simulation Mode

Overview

Simulation mode allows test execution without physical hardware using mock objects.

Activation:

python GRIFO_M_PBIT.py --simulate

Architecture

Mock Module: GRIFO_M_PBIT_mock.py

Key Components:

1. MockGrifo1553Interface

Simulates 1553 message reception
Configurable BIT timing (15-25s default)
Scenario-based field values (normal/pedestal_fail/random_failures)

2. MockSerialTerminal

Simulates serial message reception
Generates %%E, %%F, RECYCLE messages
Compatible API with real terminal

3. MockBrainBox

Simulates power control (no-op)
Logs power state changes

4. setup_simulation()

Monkey-patches global singletons
Replaces theGrifo1553 with mock
Replaces theBrainBox with mock

Configuration Options

In GRIFO_M_PBIT_mock.py

BIT completion timing
PBIT_TIME_MIN = 15.0
PBIT_TIME_MAX = 25.0

Test scenario
SIMULATION_SCENARIO = 'normal' # or 'pedestal_fail' or 'random_failures'

GRIFO_Test_Environment_Analysis.md 2026-01-30

13 / 18

Serial message generation
SIMULATE_SERIAL_ERRORS = True # Generate %%E messages
SIMULATE_SERIAL_FATAL = False # Generate %%F messages
SIMULATE_RECYCLE_EVENTS = True # Generate RECYCLE at power-on

Usage in Tests

Minimal Changes Required:

def test_proc():
 # Simulation mode detection
 if '--simulate' in sys.argv:
 from GRIFO_M_PBIT_mock import setup_simulation, create_mock_terminal
 setup_simulation()
 use_mock_terminal = True
 else:
 use_mock_terminal = False

 # ... test initialization ...

 # Terminal creation (conditional)
 if use_mock_terminal:
 terminal = create_mock_terminal()
 else:
 terminal = leo_grifo_terminal.GrifoSerialTerminal()

 # Rest of test remains UNCHANGED

Key Benefits:

✅ Zero impact on production test code
✅ No modification to environment Python
✅ No dependency changes
✅ Transparent operation (same API)
✅ Reproducible test scenarios
✅ Faster test development/debugging

Known Issues and Limitations

1. Inverse Logic Fields

Many status fields use inverse logic:

false = OK/PASS
true = FAIL

Affected Fields:

GRIFO_Test_Environment_Analysis.md 2026-01-30

14 / 18

All LRU status fields in B6
Most test result fields in B8

Reason: Hardware convention for active-high failure flags

2. Known Hardware Setup Limitations

Some tests may consistently fail in certain setups:

Pedestal status: Often fails when physical pedestal unit not connected
Pressurization status: Requires sealed system

Solution: Use KNOWN_FAILURES configuration list to track expected failures

3. Native Library Dependencies

The interpreter module requires:

_interpreter.pyd native DLL
Compatible hardware drivers
Proper 1553 bus interface card

Not portable across different systems without hardware.

4. Timing Considerations

BIT Completion: Typically 15-30s, but can vary
Message Periods: Fixed by radar firmware

B6: 100ms (10 Hz)
B7: 40ms (25 Hz)
B8: 100ms (10 Hz)
B9: 20ms (50 Hz)

Test Execution Flow

Standard Execution (with Hardware)

1. Initialize environment
 ├─ Load Python modules
 ├─ Connect to 1553 interface
 ├─ Connect to serial terminal
 └─ Initialize report

2. Test preparation
 ├─ Power off radar
 └─ Wait stabilization

3. For each test repetition:
 ├─ Power on radar
 ├─ Wait for BIT completion (180s timeout)

GRIFO_Test_Environment_Analysis.md 2026-01-30

15 / 18

 ├─ Verify B6 LRU status (12 fields)
 ├─ If failures: drill-down B8 diagnostics (185 fields)
 ├─ Collect serial statistics
 ├─ Generate per-run report
 └─ Power off radar

4. Generate final statistics report
 ├─ Aggregate all runs
 ├─ Timing analysis
 ├─ Failure analysis
 └─ Test verdict

5. Cleanup
 ├─ Disconnect serial
 ├─ Generate PDF
 └─ Exit

Simulated Execution (without Hardware)

Same flow, but with mock objects:

No actual 1553 communication
No actual serial port access
No actual power control
Simulated timing and responses

Execution Time: ~5 minutes for 10 runs (vs 30+ minutes real)

Troubleshooting

Common Issues

1. Import Error: interpreter module not found

Ensure PlatformSimulator/bin is accessible
Check Python path configuration
Verify native DLL exists

2. Serial Port Error: Cannot open COM port

Check port configuration in JSON
Verify port permissions
Ensure port not in use by another application

3. BIT Never Completes (timeout)

Check 1553 message reception
Verify radar power state
Check bit_report_available field polling

4. Field Value Always None

GRIFO_Test_Environment_Analysis.md 2026-01-30

16 / 18

Verify message name spelling
Check field name (case-sensitive)
Ensure message being received (check counter)

Debug Techniques

Enable Verbose Logging:

logging.basicConfig(level=logging.DEBUG)

Check Message Reception:

for i in range(100):
 count = interface.getSingleMessageReceivedSz("B6_...")
 print(f"Message count: {count}")
 time.sleep(0.1)

Dump Field Value:

value = interface.getMessageFieldValue("B6_...", "field_name")
print(f"Raw value: {value!r}") # Note: !r for repr

Future Enhancements

Potential Improvements

1. Configuration File Support

JSON-based test configuration
Scenario definitions
Field value expectations

2. Data Logging

CSV export of all field values
Time-series recording
Replay capability

3. Enhanced Mock

Load real message captures
Timing-accurate playback
Failure injection scenarios

4. Integration with pybusmonitor1553

GRIFO_Test_Environment_Analysis.md 2026-01-30

17 / 18

Use your module as message source
UDP-based simulation
Full protocol stack testing

References

Related Files

C++ ICD Header: ___OLD/_old/cpp/GrifoScope/GrifoSdkEif/pub/TH/th_b1553_icd.h
Message Definitions: pybusmonitor1553/Grifo_E_1553lib/messages/
ICD Documentation: doc/ICD-Implementation-Notes.md

Contact Information

For questions about this environment, refer to:

Original test developers (Genova team)
GRIFO radar system documentation
MIL-STD-1553 protocol specifications

Appendix: Quick Reference

Command Line

Run test with hardware
python GRIFO_M_PBIT.py

Run test in simulation mode
python GRIFO_M_PBIT.py --simulate

Change number of repetitions (edit script)
NUMBER_OF_REPETITIONS = 10

Key Global Objects

from leo_grifo_1553 import theGrifo1553 # 1553 interface
from leo_grifo_io_box import theBrainBox # Power control
from leo_grifo_core import theRecorder # Data recorder

Common Code Patterns

Check field value
success, value, error = theGrifo1553.check(
 expected_value,

GRIFO_Test_Environment_Analysis.md 2026-01-30

18 / 18

 message_name,
 field_name,
 timeout=5.0,
 step=0.1
)

Power cycle
power_grifo_off(wait_after=3)
power_grifo_on(wait_after=0)

Report section
report.open_session('Test Phase 1')
report.add_comment('Performing checks...')
report.close_session()

End of Document

