GRIFO_Test_Environment_Analysis.md 2026-01-30

GRIFO Test Environment - Technical Analysis

Document Version: 1.0
Date: 2026-01-29
Purpose: Technical documentation of the GRIFO automatic test environment architecture

Table of Contents

. Environment Overview

. Directory Structure

. Core Components

. 1553 Interface Architecture
. Serial Communication

. Power Control

. Test Framework

. Python Environment

. Message Protocol

O W 0o N O Ul A W DN =

—_

. Simulation Mode

Environment Overview

The GRIFO test environment is a Python-based automated test system for the GRIFO-F/TH radar system. It
provides:

* 1553 bus interface for radar communication (via native C++ library)
¢ Serial terminal interface for radar diagnostics monitoring

* Power control via BrainBox interface

* PDF report generation for test results

* Comprehensive logging and data recording

Key Technologies

® Python 3.x (local installation in environment)
* SWIG bindings for native C++ 1553 library

* Serial communication (pyserial)

* PDF generation (fpdf2)

* Custom test framework (leo_grifo_* modules)

Directory Structure

GrifoAutomaticTestEnv/

— PlatformSimulator/ # Native 1553 interface components
| — bin/

1/18

GRIFO_Test_Environment_Analysis.md

|
|
|
L

F__

T 1

|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
l_
L

f—— interpreter.py

— _interpreter.pyd

L— help/

(additional platform files)

TestEnvironment/

env/
F—— leo grifo 1553.py #
leo_grifo_terminal.py #
leo_grifo_io_box.py #
leo_grifo_common.py #
leo_grifo_core.py #
leo _grifo_test_report.py #
test_common_function.py #
logger.py #
site-packages/ #
— defusedxml/
— fpdf/
— PIL/

pyvisa/

'_
— serial/
L

[TTTTTTTT

__pycache__/
scripts/
F—— __init__ .py #
— GRIFO_M_PBIT.py #
— GRIFO_M_PBIT_mock.py #
L— (other test scripts)
json/
L

(test configurations)

LOG/
pdf reports/

Documents/
run_|

batch.bat

SWIG-generated Python wrapper
Native C++ DLL (1553 hardware driver)
Documentation files (.chm)

Python libraries and utilities
1553 interface wrapper
Serial terminal handler
Power control (BrainBox)
Common utilities
Core framework (recorder)
PDF report generation
Test helper functions
Logging setup
Local Python packages

Test scripts

Environment setup (sys.path config)
Main PBIT test script

Simulation mode mock (NEW)

Configuration files

Test execution logs
Generated test reports

Project documentation
Batch execution scripts

2026-01-30

Core Components

1.

Location:

- Environment Bootstrap

Purpose: Configure Python import paths for test scripts

import os, sys

LIB_DIR

= os.path.join(os.path.dirname

(_file), '..', 'env'")

2/18

GRIFO_Test_Environment_Analysis.md

sys.path.append(LIB_DIR)
sys.path.append(os.path.join(LIB_DIR, 'site-packages'))

Key Function:

e Adds to Python path (for leo_grifo_* modules)
e Adds to Python path (for dependencies)
® Enables relative imports from test scripts

2026-01-30

1553 Interface Architecture

Native Layer: Module

Location: +
Type: SWIG-generated Python bindings for C++ library
Key Classes:

o - Main interface factory
. - Specific 1553 hardware interface

Functionality:

* Low-level 1553 bus communication
® Message transmission/reception

* Field access and manipulation

* Hardware-specific drivers

Python Wrapper:
Location:
Class:

Key Methods:

def init :
"""Initialize interface and get hardware reference
mgr = interpreter.PyInterfaceManager()
index = mgr.indexOf('Grifo 1553 Interface')
self.grifo_1553 = mgr.getInterface(index)
self.run() # Start message reception

def check -> (bool, Any, AnyStr):

Verify message field value with optional timing and retry logic.

Args:
expected result: Expected value or range (tuple for range)

3/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

def

def

def

def

*fields: (message_name, field_name)

**kwargs:
- timeout: Max wait time for message reception
- step: Polling interval for retry logic

Returns:
(success: bool, value: Any, error: str)

set(self, value, *fields, **kwargs) -> (bool, AnyStr):

Assign value to TX message field and optionally send.

Args:
value: Field value (None = send last committed message)
*fields: (message name, field name)
**kwargs:
- commitChanges: Send message after assignment
- errorInject: Inject CRC error for testing

get(self, *fields, **kwargs) -> (Any, AnyStr):

Read message field value.

Args:
*fields: (message name, field name)

Returns:
(value: Any, error: str)

getInterface(self):
"""Return raw 1553 interface object for advanced operations
return self.grifo_1553

run(self, enable: bool):
"""Start/stop message reception
if enable:

self.grifo 1553.start()
else:

self.grifo_1553.stop()

Global Singleton:

theGrifol553 = GrifoInstrumentInterface(9.2)

Usage Pattern in Tests:

4/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

from leo_grifo_1553 import theGrifol553

Get interface object
interface = theGrifol553.getInterface()

Read message counter
count =
interface.getSingleMessageReceivedSz("B6_MsgRdrSettingsAndParametersTellback™)

Read field value
value = interface.getMessageFieldValue("B6 MsgRdrSettingsAndParametersTellback",
"radar_health_status_...")

Check field with automatic retry logic

success, value, error = theGrifol553.check(
"false", # Expected value
"B6_MsgRdrSettingsAndParametersTellback",

"radar_health_status_...",
timeout=5.0, # Wait up to 5s for message
step=0.1 # Poll every 100ms

Serial Communication

Base Class:

Location:

Purpose: Generic serial communication wrapper using pyserial
Features:

* Configurable port, baud rate, stop bits, parity
¢ Line-feed mode for text-based protocols
* (Callback-based message reception

GRIFO Implementation:
Location:
Class:

Configuration: Loaded from JSON config

"serial_terminal”: {
"port": "COM2",
"speed": "9600",
"stop_bit": "1",
"bytesize": 8,
5/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

llpar\ityll: IINII-,
"mode": "EXPECT_LF"

Message Pattern Detection:

. - Error messages (logged as critical)

. - Fatal messages (logged as critical)

. - System restart keyword (case-insensitive)
Statistics Tracking:

self. serial stats = {

"total messages': 0, # Total messages received
'error_messages': 0, # %%E count

"fatal_messages': 0, # %%F count

'recycle_count': 0, # RECYCLE keyword occurrences
"error_details': [], # [(timestamp, message), ...]
‘fatal_details': [], # [(timestamp, message), ...]
'recycle details': [], # [(timestamp, message), ...]

APl Methods:

def connect(self):
"""Connect to serial port"""
def disconnect(self):
"""Disconnect from serial port"""
def get _serial_statistics(self) -> dict:
"""Get current statistics snapshot
return dict copy of _serial_stats

def reset serial statistics(self):
"""Reset statistics for new test run

Usage Pattern:

import leo_grifo_terminal

terminal = leo_grifo_terminal.GrifoSerialTerminal()
terminal.connect()

At test run start
terminal.reset _serial statistics()

6/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

During test execution
(messages received automatically in background)

At test run end

stats = terminal.get_serial statistics()
print(f"Errors: {stats['error_messages']}")
print(f"Fatal: {stats['fatal messages']}")
print(f"Recycles: {stats['recycle_count']}")

terminal.disconnect()

Power Control

BrainBox Interface:

Location:

Purpose: Control radar power via external control box

Global Singleton:

theBrainBox = BrainBoxInterface()

Usage (via helper functions):

from test_common_function import power_grifo_on, power_grifo_off

Power on radar with 3s wait
power_grifo on(wait_after=3)

Power off radar
power_grifo off(wait_after=0)

Implementation:

def power_grifo on(wait_after=0):
setValue(theBrainBox, True, 'MAIN_POWER")
ret, err = check(theBrainBox, 1, "MAIN POWER")
time.sleep(wait_after)
return ret

def power_grifo_off(wait_after=0):

setValue(theBrainBox, False, 'MAIN_POWER")
ret, err = check(theBrainBox, @, 'MAIN_POWER', timeout=0.1)

7118

GRIFO_Test_Environment_Analysis.md

time.sleep(wait_after)
return ret

2026-01-30

Test Framework

Test Report:

Class:
Methods:
def init (self, test name):
"""Initialize report with test name"""
def open session(self, session name):

def

def

def

Start new test session section

close_session(self):
"""End current session"""
add_comment(self, comment):
"""Add text to report"""

generate_pdf(self):
"""Generate final PDF report

Usage Pattern:

from leo_grifo_test_report import testReport

report = testReport(sys.argv[@])

report.open_session('Test Initialization')
report.add_comment('Starting test...")

...

test operations

report.close_session()

report.generate_pdf()

Common Functions:

Key Utilities:

def check(interface, expected, *fields, **kwargs):

8/18

Universal check function for any interface

GRIFO_Test_Environment_Analysis.md

def setValue
"""Universal set function for any interface

nnn

def get_test_name
"""Extract test name from script file path"""

def startTest -> datetime:
"""Log test start time

nnn

def stopTest -> datetime:
"""lLog test stop time

nnn

Core Recorder:

Global Object:

theRecorder = DataRecorder()

Purpose: Record test steps for later analysis/playback

Methods:

def add_step
"""Record test step with outcome

def logStart
"""Start recording session

def logStop
"""Stop recording session

nnn

2026-01-30

Python Environment
Local Packages (site-packages)
Location:

Installed Packages:

. - Secure XML parsing

. - PDF generation

o - Image processing

. - Instrument control (if needed)
. - Serial communication

Python Version: Python 3.x (exact version determined by environment)

9/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

Import Resolution Order:

1. Test script directory

2. directory (leo_grifo_* modules)
3. (dependencies)
4. System Python paths

Message Protocol
1553 Message Structure
Message Types Used in Tests:
B6:

¢ Direction: RX (from radar to test system)

* Purpose: Radar settings confirmation + LRU status
* Frequency: 10 Hz (100ms period)

¢ Key Fields:

° - BIT completion flag

o - Overall radar health (enum)

o , , etc. - LRU status (inverse logic)
o , temperature alarms

LRU Status Fields (12 total):

Inverse logic: false = OK, true = FAIL
"array_status"

"pedestal status"
"processor_status"”
"receiver_status"

"rx_front_end status"

"servoloop status"”
"trasmitter_status"
"pressurization_status"”
"processor_over_temperature_alarm"
"servoloop _over_temperature_alarm"
"trasmitter over_ temperature_alarm"

Enum: RDR_OK / RDR_FAIL
"radar_fail status"”

B8:

¢ Direction: RX (from radar to test system)
® Purpose: Detailed BIT diagnostic results
* Frequency: 10 Hz (100ms period)

* Key Field Categories:

10/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

o Degradation conditions (12 fields)
© SRU failure locations (43 fields across 6 subsystems)
© Test results (118 fields across 10 test types)

Field Categories:
1. Degradation Conditions (12 fields)
o System-level failures (BCN, groups, total radar fail)
2. SRU Failure Locations (43 fields)

o Pedestal (5 SRUs)

© Processor (14 SRUs)
© Receiver (7 SRUs)

o RX Frontend (6 SRUs)
o Servoloop (3 SRUs)

© Transmitter (8 SRUs)

3. Test Results (118 fields)

o AGC tests (11)

© Data Processor tests (14)

© Integrated System tests (15)

© Post Processor tests (8)

© Power Supply tests (2)

o Receiver/RX Frontend tests (7)
o RX Module tests (6)

o Servoloop tests (15)

o Signal Processor tests (14)

© Transmitter tests (26)

B9: Message (target data)

¢ Direction: RX (from radar)
* Purpose: Target track data
* Frequency: 50 Hz (20ms period)

Message Field Naming Convention
Pattern:

Example:

radar_health status and bit report valid RdrHealthStatusAndBitReport processor sta
tus

L Subsystem/Group L Field
name

11/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

Simulation Mode
Overview
Simulation mode allows test execution without physical hardware using mock objects.

Activation:

python GRIFO_M PBIT.py --simulate

Architecture
Mock Module:

Key Components:

1.
o Simulates 1553 message reception
o Configurable BIT timing (15-25s default)
© Scenario-based field values (normal/pedestal_fail/random_failures)
2.
© Simulates serial message reception
© Generates %%E, %%F, RECYCLE messages
o Compatible API with real terminal
3.
o Simulates power control (no-op)
© Logs power state changes
4

© Monkey-patches global singletons
© Replaces with mock
o Replaces with mock

Configuration Options

PBIT_TIME_MIN
PBIT_TIME_MAX

SIMULATION_SCENARIO = 'normal’
12/18

GRIFO_Test_Environment_Analysis.md

Serial message generation

SIMULATE_SERIAL_ERRORS = True # Generate %%E messages
SIMULATE_SERIAL_FATAL = False # Generate %%F messages
SIMULATE_RECYCLE_EVENTS = True # Generate RECYCLE at power-on

Usage in Tests

Minimal Changes Required:

def test _proc():

Simulation mode detection

if '--simulate' in sys.argv:
from GRIFO_M PBIT_mock import setup_simulation, create_mock_terminal
setup_simulation()
use_mock_terminal = True

else:
use _mock terminal = False

... test initialization ...

Terminal creation (conditional)
if use_mock_terminal:
terminal = create_mock_terminal()
else:
terminal = leo_grifo_terminal.GrifoSerialTerminal()

Rest of test remains UNCHANGED

Key Benefits:

o Zero impact on production test code

. No modification to environment Python
. No dependency changes

. Transparent operation (same API)

o Reproducible test scenarios

o Faster test development/debugging

2026-01-30

Known Issues and Limitations
1. Inverse Logic Fields
Many status fields use inverse logic:

. = OK/PASS
. = FAIL

Affected Fields:

13/18

GRIFO_Test_Environment_Analysis.md

e All LRU status fields in B6
* Most test result fields in B8

Reason: Hardware convention for active-high failure flags

2. Known Hardware Setup Limitations
Some tests may consistently fail in certain setups:

* Pedestal status: Often fails when physical pedestal unit not connected
* Pressurization status: Requires sealed system

Solution: Use configuration list to track expected failures

3. Native Library Dependencies
The module requires:

. native DLL
® Compatible hardware drivers
* Proper 1553 bus interface card

Not portable across different systems without hardware.

4. Timing Considerations

¢ BIT Completion: Typically 15-30s, but can vary
* Message Periods: Fixed by radar firmware

© B6: 100ms (10 Hz)

© B7:40ms (25 Hz)

o6 B8:100ms (10 Hz)

© B9: 20ms (50 Hz)

2026-01-30

Test Execution Flow

Standard Execution (with Hardware)

1. Initialize environment
- Load Python modules
- Connect to 1553 interface
- Connect to serial terminal
L Initialize report

2. Test preparation
- Power off radar
L- Wait stabilization

3. For each test repetition:
- Power on radar
|— Wait for BIT completion (180s timeout)

14/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

- Verify B6 LRU status (12 fields)

|— If failures: drill-down B8 diagnostics (185 fields)
- Collect serial statistics

|— Generate per-run report

L~ power off radar

4. Generate final statistics report
|— Aggregate all runs
|— Timing analysis
- Failure analysis
L Test verdict

5. Cleanup
- Disconnect serial
|— Generate PDF
L Exit

Simulated Execution (without Hardware)
Same flow, but with mock objects:

* No actual 1553 communication
* No actual serial port access

* No actual power control

® Simulated timing and responses

Execution Time: ~5 minutes for 10 runs (vs 30+ minutes real)

Troubleshooting
Common Issues
1. Import Error: module not found

© Ensure is accessible
© Check Python path configuration
© Verify native DLL exists

2. Serial Port Error: Cannot open COM port

© Check port configuration in JSON
o Verify port permissions
© Ensure port not in use by another application

3. BIT Never Completes (timeout)

© Check 1553 message reception
o Verify radar power state
© Check field polling

4. Field Value Always
15/18

GRIFO_Test_Environment_Analysis.md 2026-01-30

© Verify message name spelling
o Check field name (case-sensitive)
© Ensure message being received (check counter)

Debug Techniques

Enable Verbose Logging:

logging.basicConfig(level=1ogging.DEBUG)

Check Message Reception:

for i in range():
count = interface.getSingleMessageReceivedSz("B6_...")
print(f"Message count: {count}")
time.sleep()

Dump Field Value:

value = interface.getMessageFieldvalue("B6_...", "field name")
print(f"Raw value: {value!r}") # Note: !r for repr

Future Enhancements

Potential Improvements
1. Configuration File Support

© JSON-based test configuration
© Scenario definitions
© Field value expectations

2. Data Logging

© (CSV export of all field values
© Time-series recording
© Replay capability

3. Enhanced Mock

© Load real message captures
o Timing-accurate playback
© Failure injection scenarios

4. Integration with pybusmonitor1553

16/18

GRIFO_Test_Environment_Analysis.md

o Use your module as message source
© UDP-based simulation
© Full protocol stack testing

2026-01-30

References

Related Files

e C++ ICD Header:
* Message Definitions:
¢ |CD Documentation:

Contact Information
For questions about this environment, refer to:

* Original test developers (Genova team)
® GRIFO radar system documentation
* MIL-STD-1553 protocol specifications

Appendix: Quick Reference
Command Line
Run test with hardware
python GRIFO_M_PBIT.py

Run test in simulation mode
python GRIFO M PBIT.py --simulate

Change number of repetitions (edit script)
NUMBER_OF_REPETITIONS = 10

Key Global Objects

from leo_grifo_1553 import theGrifol553
from leo grifo io box import theBrainBox
from leo_grifo_core import theRecorder

Common Code Patterns

Check field value
success, value, error = theGrifol553.check(
expected value,

171718

1553 interface
Power control
Data recorder

GRIFO_Test_Environment_Analysis.md 2026-01-30

message_name,
field name,
timeout=5.0,
step=0.1

Power cycle
power_grifo off(wait_after=3)
power_grifo_on(wait_after=0)

Report section

report.open_session('Test Phase 1")
report.add_comment('Performing checks...")
report.close session()

End of Document

18/18

