WORKSPACE_TECHNICAL_SPEC.md 2026-01-30

Panoramica tecnica del workspace —
GrifoAutomaticTestEnv

Questo documento fornisce una descrizione tecnica e operativa del progetto, pensata come base per gli

sviluppi futuri.

1

. Scopo generale

Ambiente di test automatico Python per il sistema radar GRIFO-F/TH. Fornisce accesso al bus 1553,
comunicazione seriale, controllo alimentazione, raccolta/logging dei risultati e generazione di report in
PDF.

. Struttura principale (cartelle rilevanti)

— componenti nativi e binding SWIG per 1553.
o e (driver nativo). Questi
espongono |'API a basso livello per la comunicazione 1553.
— librerie Python condivise tra gli script di test.

o — wrapper Python per 1553 (classe e
singleton).
o — gestione terminale seriale e parsing messaggi (%%E, ,)-
o — interfaccia BrainBox per controllo alimentazione ().
o — recorder () per tracciare step e sessioni.
° / — generazione PDF a partire da
template JSON.
° — funzioni di alto livello usate dagli script (, ,
').
o — dipendenze locali usate dall'ambiente (fpdf2, pyserial, PIL, ecc.).
— script utente e test runner.
° — test principale (PBIT). Rileva per usare i mock.
° — implementazione mock (monkey-patching dei singoli oggetti globali
per simulazione).
° — bootstrap dei path (aggiunge e a).
— template e configurazioni (es.)-
e — output di esecuzione.

. Pattern e convenzioni di progetto (importanti per gli agenti)

Singleton globali: , , . Non rinominare questi oggetti senza
aggiornare tutti i call-site.
Interfaccia comune: classi di livello dispositivo implementano

. , (vedi
in). Usare le funzioni wrapper in
per tracciare i risultati.
Recorder: usare / per registrare lo storico del test; i

report PDF aggregheranno questi dati.

WORKSPACE_TECHNICAL_SPEC.md 2026-01-30

* Path precedence: gli script si aspettano che sia prioritario rispetto alla Python di
sistema. Il bootstrap in gestisce questo.

4. Interazione con il codice nativo 1553

. e la libreria nativa (funziona solo con la versione di
Python con cui e stata compilata). Per questo motivo e obbligatorio usare la versione di Python
contenuta in (embedded Python) per eseguire i test in modo affidabile.

¢ Evitare di eseguire gli script con la Python di sistema: il binding nativo potrebbe non essere caricabile o
provocare errori di ABI.

5. Modalita di esecuzione raccomandate

* Rapida (consigliata per sviluppo):

cd <repo >
\run_simulate simple.bat

oppure (esplicito):

PlatformSimulator\bin\python.exe TestEnvironment\scripts\GRIFO_M_PBIT.py -

® Produzione-like (usa I'ambiente embedded):

cd <repo >
.\run_simulate.bat

* Wrapper manuale utile per Cl/debug:

python python_simulate_wrapper.py

6. Esecuzione in Cl

* Nel job Cl bisogna utilizzare I'interprete Python presente in o garantire che

sia compatibile con la Python della runner. Consiglio pratico per GitHub Actions:

copiare nel runner e lanciare

7. Cosa cercare quando si modifica codice critico

* Non cambiare le firme né i nomi dei singletons senza aggiornare tutti gli script sotto

2/3

WORKSPACE_TECHNICAL_SPEC.md 2026-01-30

* Se modifichi report PDF o template JSON aggiorna e controlla che
sia ancora invocato con i parametri attesi.
* Aggiunte a locali devono essere testate con l'interprete embedded.

8. Raccomandazioni di sviluppo immediate

® Usare esclusivamente l'interprete in per sviluppare e testare.
* Eseguire per validare le modifiche senza hardware reale.
* Aggiungere test di smoke che: lancino lo script in modalita , verifichino che esca con

codice 0 e che venga generato un PDF in

9. File chiave per iniziare (ordine suggerito di lettura)

. (bootstrap dei path)

o (wrapper 1553)

. (interfaccia comune)

U (API helper per test)

. (flow test principale)

. (implementazione simulazione)

10. Esempio rapido di comando per sviluppo locale (embedded Python)

PlatformSimulator\bin\python.exe TestEnvironment\scripts\GRIFO M PBIT.py -

11. Note finali e prossimi passi consigliati

* Primo passo: aggiungere uno smoke-test script sotto che esegua il flusso
e verifichi la presenza del PDF; questo rendera immediato il feedback per ogni modifica.
* Se vuoi, implemento subito lo smoke-test e un esempio di job Cl che usa l'interprete embedded.

Documento generato automaticamente come base per i futuri sviluppi; chiedimi di espandere sezioni
specifiche o di creare gli script di smoke-test e CI.

3/3

