
WORKSPACE_TECHNICAL_SPEC.md 2026-01-30

1 / 3

Panoramica tecnica del workspace —
GrifoAutomaticTestEnv
Questo documento fornisce una descrizione tecnica e operativa del progetto, pensata come base per gli
sviluppi futuri.

1. Scopo generale

Ambiente di test automatico Python per il sistema radar GRIFO-F/TH. Fornisce accesso al bus 1553,
comunicazione seriale, controllo alimentazione, raccolta/logging dei risultati e generazione di report in
PDF.

2. Struttura principale (cartelle rilevanti)

PlatformSimulator/ — componenti nativi e binding SWIG per 1553.
PlatformSimulator/bin/interpreter.py e _interpreter.pyd (driver nativo). Questi
espongono l'API a basso livello per la comunicazione 1553.

TestEnvironment/env/ — librerie Python condivise tra gli script di test.
leo_grifo_1553.py — wrapper Python per 1553 (classe GrifoInstrumentInterface e
singleton theGrifo1553).
leo_grifo_terminal.py — gestione terminale seriale e parsing messaggi (%%E, %%F, RECYCLE).
leo_grifo_io_box.py — interfaccia BrainBox per controllo alimentazione (theBrainBox).
leo_grifo_core.py — recorder (theRecorder) per tracciare step e sessioni.
leo_grifo_test_report.py / leo_grifo_pdf2report.py — generazione PDF a partire da
template JSON.
test_common_function.py — funzioni di alto livello usate dagli script (check, getValue,
setValue, generate_pdf_report).
site-packages/ — dipendenze locali usate dall'ambiente (fpdf2, pyserial, PIL, ecc.).

TestEnvironment/scripts/ — script utente e test runner.
GRIFO_M_PBIT.py — test principale (PBIT). Rileva --simulate per usare i mock.
GRIFO_M_PBIT_mock.py — implementazione mock (monkey-patching dei singoli oggetti globali
per simulazione).
__init__.py — bootstrap dei path (aggiunge ../env e env/site-packages a sys.path).

TestEnvironment/json/ — template e configurazioni (es. default_template.json).
TestEnvironment/pdf_reports/ e TestEnvironment/LOG/ — output di esecuzione.

3. Pattern e convenzioni di progetto (importanti per gli agenti)

Singleton globali: theGrifo1553, theBrainBox, theRecorder. Non rinominare questi oggetti senza
aggiornare tutti i call-site.
Interfaccia comune: classi di livello dispositivo implementano check(expected, *fields,
**kwargs), get(*fields, **kwargs), set(value, *fields, **kwargs) (vedi
TestCommonInterface in leo_grifo_common.py). Usare le funzioni wrapper in
test_common_function.py per tracciare i risultati.
Recorder: usare theRecorder.add_step() / close_session() per registrare lo storico del test; i
report PDF aggregheranno questi dati.

WORKSPACE_TECHNICAL_SPEC.md 2026-01-30

2 / 3

Path precedence: gli script si aspettano che env/site-packages sia prioritario rispetto alla Python di
sistema. Il bootstrap in TestEnvironment/scripts/__init__.py gestisce questo.

4. Interazione con il codice nativo 1553

PlatformSimulator/bin/_interpreter.pyd è la libreria nativa (funziona solo con la versione di
Python con cui è stata compilata). Per questo motivo è obbligatorio usare la versione di Python
contenuta in PlatformSimulator/bin (embedded Python) per eseguire i test in modo affidabile.
Evitare di eseguire gli script con la Python di sistema: il binding nativo potrebbe non essere caricabile o
provocare errori di ABI.

5. Modalità di esecuzione raccomandate

Rapida (consigliata per sviluppo):

cd <repo-root>
.\run_simulate_simple.bat

oppure (esplicito):

PlatformSimulator\bin\python.exe TestEnvironment\scripts\GRIFO_M_PBIT.py --
simulate

Produzione-like (usa l'ambiente embedded):

cd <repo-root>
.\run_simulate.bat

Wrapper manuale utile per CI/debug:

python python_simulate_wrapper.py

6. Esecuzione in CI

Nel job CI bisogna utilizzare l'interprete Python presente in PlatformSimulator/bin o garantire che
_interpreter.pyd sia compatibile con la Python della runner. Consiglio pratico per GitHub Actions:
copiare PlatformSimulator/bin nel runner e lanciare PlatformSimulator/bin/python.exe
python_simulate_wrapper.py.

7. Cosa cercare quando si modifica codice critico

Non cambiare le firme check/get/set né i nomi dei singletons senza aggiornare tutti gli script sotto
TestEnvironment/scripts/.

WORKSPACE_TECHNICAL_SPEC.md 2026-01-30

3 / 3

Se modifichi report PDF o template JSON aggiorna leo_grifo_test_report.py e controlla che
generate_pdf_report() sia ancora invocato con i parametri attesi.
Aggiunte a site-packages locali devono essere testate con l'interprete embedded.

8. Raccomandazioni di sviluppo immediate

Usare esclusivamente l'interprete in PlatformSimulator/bin per sviluppare e testare.
Eseguire GRIFO_M_PBIT.py --simulate per validare le modifiche senza hardware reale.
Aggiungere test di smoke che: lancino lo script in modalità --simulate, verifichino che esca con
codice 0 e che venga generato un PDF in TestEnvironment/pdf_reports/.

9. File chiave per iniziare (ordine suggerito di lettura)

TestEnvironment/scripts/__init__.py (bootstrap dei path)
TestEnvironment/env/leo_grifo_1553.py (wrapper 1553)
TestEnvironment/env/leo_grifo_common.py (interfaccia comune)
TestEnvironment/env/test_common_function.py (API helper per test)
TestEnvironment/scripts/GRIFO_M_PBIT.py (flow test principale)
TestEnvironment/scripts/GRIFO_M_PBIT_mock.py (implementazione simulazione)

10. Esempio rapido di comando per sviluppo locale (embedded Python)

dalla radice del repository
PlatformSimulator\bin\python.exe TestEnvironment\scripts\GRIFO_M_PBIT.py --
simulate

11. Note finali e prossimi passi consigliati

Primo passo: aggiungere uno smoke-test script sotto TestEnvironment/scripts/ che esegua il flusso
--simulate e verifichi la presenza del PDF; questo renderà immediato il feedback per ogni modifica.
Se vuoi, implemento subito lo smoke-test e un esempio di job CI che usa l'interprete embedded.

Documento generato automaticamente come base per i futuri sviluppi; chiedimi di espandere sezioni
specifiche o di creare gli script di smoke-test e CI.

