ARCHITECTURE.md 2025-11-11

Guida all'Architettura e al Codice Sorgente del Radar
Target Simulator

Questo documento descrive I'architettura interna, le decisioni di progettazione e la struttura del codice
sorgente dell'applicazione Radar Target Simulator. E destinato agli sviluppatori e agli ingegneri che
necessitano di comprendere, manutenere o estendere il software.

1. Filosofia del Progetto e Principi Architetturali

L'architettura del software si basa su alcuni principi chiave volti a garantire manutenibilita, estendibilita e
robustezza.

1.1. Separation of Concerns (SoC)
Il principio fondamentale € la netta separazione delle responsabilita tra i vari componenti del sistema:

¢ Interfaccia Utente (GUI): Responsabile solo della presentazione dei dati e della cattura dell'input
utente. Non contiene logica di business.

* Logica di Simulazione (Core/Engine): Responsabile del calcolo della cinematica dei target. E
completamente agnostica rispetto a come i dati vengono visualizzati o trasmessi.

¢ Comunicazione (Communicators): Responsabile della traduzione dei comandi di alto livello in
messaggi specifici di un protocollo e della gestione della comunicazione a basso livello.

Questa separazione permette, ad esempio, di sostituire I'interfaccia basata su Tkinter con una basata su web
senza modificare il motore di simulazione, o di aggiungere un nuovo protocollo di comunicazione senza
toccare la GUI.

1.2. Thread Safety e Comunicazione tra Thread

L'applicazione e multi-threaded per garantire che I'interfaccia utente rimanga reattiva durante le operazioni
potenzialmente lunghe (come la simulazione o I'attesa di pacchetti di rete).

* GUI Thread (Main Thread): Esegue il loop di Tkinter e gestisce tutti i widget.

¢ Simulation Thread: Esegue il loop del per aggiornare lo stato dei target a
intervalli regolari.

¢ Communication Thread(s): Componenti come avviano i propri thread per 'ascolto non
bloccante di pacchetti UDP.

Per garantire una comunicazione sicura tra questi thread, I'architettura si affida a due meccanismi principali:

1. : Un contenitore dati centralizzato e thread-safe (protetto da).
Funge da "single source of truth" per lo stato della simulazione. Tutti i thread scrivono e leggono da
questo hub, che agisce come un intermediario sicuro, disaccoppiando i produttori di dati (motore di
simulazione, ricevitore di rete) dai consumatori (GUI).

2. : Utilizzata per inviare notifiche o dati che richiedono un'elaborazione immediata dalla
GUI (es. aggiornamenti per finestre di debug o notifiche di fine simulazione).

1.3. Modularita e Astrazione

ARCHITECTURE.md 2025-11-11

Per facilitare I'estensione, il codice fa uso di astrazioni e interfacce. L'esempio piu significativo & l'interfaccia

. Qualsiasi protocollo di comunicazione (Seriale, TFTP, SFP, o futuri) deve
semplicemente implementare i metodi definiti da questa classe base (. . ,
etc.). Il resto dell'applicazione interagisce solo con l'interfaccia, rendendo I'aggiunta di un nuovo protocollo
un'operazione a basso impatto.

1.4. Standard e Convenzioni

Il codice aderisce alle seguenti convenzioni per garantire leggibilita e coerenza:

¢ Stile del Codice: Segue lo standard PEPS8.

* Linguaggio: Nomi di funzioni, variabili, commenti e docstring sono scritti in inglese.

¢ Tipizzazione: Viene fatto uso di type hints (secondo PEP 484) per migliorare la robustezza e la
comprensibilita del codice.

2. Struttura delle Cartelle del Progetto

Il codice sorgente e organizzato in un pacchetto Python () con una struttura modulare che
riflette la separazione delle responsabilita.

|— doc/ # Documentazione (manuali, guide come questa)

| — manual/

| L— user_guide/

— scenarios/ # File JSON contenenti gli scenari predefiniti
F—— target_simulator/ # Codice sorgente principale del pacchetto
| F—— analysis/ # Moduli per 1l'analisi dati (es. PerformanceAnalyzer,
SimulationStateHub)
| — core/ # Cuore della logica di business e simulazione
F—— models.py # Definizioni dei dati (Target, Waypoint, Scenario)

F—— simulation_engine.py # Il motore di calcolo della simulazione

(moduli di comunicazione: sfp, serial, tftp)

Componenti dell'interfaccia utente (widget Tkinter)
main_view.py # Classe principale della finestra dell'applicazione
ppi_display.py # Widget per la visualizzazione radar

. (altre finestre e widget personalizzati)

FTTE F

|
-
|
B

|
|
|
|
|
|
|
|
SimulationController)
|
|
|
|
|
|
(
|

51mu1at10n/ # Classi di alto livello per l'orchestrazione (es.

— utils/ # Funzioni e classi di utilita trasversali

| F—— config_manager.py # Gestione dei file di configurazione

| f—— logger.py # Configurazione del sistema di logging

| (altre utilita)

F—— __1nit__.py # Entry point del pacchetto

F—— __main__.py # Entry point per 1l'esecuzione dell'applicazione
“python -m target_simulator’)

L— config.py # Configurazioni globali e costanti (es.
LOGGING_CONFIG)
— README.md # Readme del progetto
L requirements.txt # Dipendenze Python

2/9

ARCHITECTURE.md 2025-11-11

3. Mappa dei Componenti Chiave e Flusso dei Dati

Comprendere come i dati fluiscono attraverso I'applicazione € fondamentale per capire il suo funzionamento.
Questa sezione descrive le interazioni tra i componenti principali durante due operazioni chiave: I'esecuzione

di una simulazione e la ricezione di dati reali.
3.1. Diagramma Architetturale e Flusso Dati
Il seguente diagramma illustra le relazioni e il flusso di informazioni tra i componenti chiave del sistema.

(Placeholder per l'immagine)

Descrizione dell'Immagine: (Questo e il diagramma descritto nel capitolo
precedente del manuale tecnico, che possiamo riutilizzare e dettagliare qui. Mostra i blocchi ,

, , , e le loro
interazioni).

3.2. Flusso 1: Esecuzione di una Simulazione (Dati in Uscita)

Questo flusso descrive cosa accade dal momento in cui l'utente preme "Start Live" fino all'invio dei dati dei
target.

1. Azione Utente (GUI Thread):

© L'utente clicca il pulsante sulla
° delega la richiesta al . Per evitare avvii multipli, imposta un
flag () e aggiorna lo stato dei pulsanti.

2. Orchestrazione (SimulationController - Nuovo Thread):

o |l avvia un thread in background per non bloccare la GUI.

© Reset Radar: Chiamal il per inviare un comando di reset al device under
test.

© Cattura Origine: Legge lo stato corrente dell'ownship dallo e lo salva

come "origine della simulazione" fissa chiamando
© Invio Scenario: Chiama il per inviare lo stato iniziale di tutti i target.
© Avvio Motore: Se i passaggi precedenti hanno successo, crea e avvia un'istanza del
in un nuovo thread.

3. Ciclo di Simulazione (SimulationEngine - Thread di Simulazione):

o |l entra nel suo loop principale, che si ripete a una frequenza fissa (es. 20
Hz).
© Ad ogni "tick": a. Calcola il dall'ultimo tick. b. Chiama
per aggiornare la posizione di ogni target. c. Scrive il
nuovo stato di ogni target nello chiamando

o Aintervalli piu lenti (es. 1 Hz), definiti dall'utente: a. Prepara una lista di comandi di
aggiornamento (es. o payload JSON). b. Invia i comandi tramite l'interfaccia del

3/9

ARCHITECTURE.md 2025-11-11

4. Visualizzazione (GUI Thread):

o |l di si esegue periodicamente (es. ogni 40 ms).
© Chiama (in).
o legge dallo

= Gli stati piu recenti dei target simulati.
= |'origine della simulazione.
® | o stato corrente dell'ownship.
o Esegue la trasformazione di coordinate (rotazione + traslazione) per calcolare la posizione dei
target simulati relativa all'ownship corrente.
° passa i dati trasformati al , che aggiorna il canvas.

3.3. Flusso 2: Ricezione di Dati Reali (Dati in Ingresso)
Questo flusso descrive come i dati inviati dal radar vengono ricevuti, processati e visualizzati.
1. Ricezione di Rete (Thread di Comunicazione):

o || (o un altro componente di comunicazione) ha un thread in background in
ascolto su una porta UDP.
© Quando riceve un pacchetto, lo processa (es. riassembla i frammenti SFP).

2. Routing del Payload (Thread di Comunicazione):

© Una volta che un payload completo e disponibile, il lo passa al
in base al suo Flow ID.
o 1l ispeziona il payload. Se & un messaggio di stato del radar (es. Flow ID
'R"): a. Decodifica il payload binario in una struttura dati (). b. Estrae i dati

dell'ownship (posizione, heading, etc.) e dei target reali.

3. Aggiornamento dello Stato (Thread di Comunicazione):

o |l aggiorna lo (che e thread-safe):
= Chiama con i nuovi dati di navigazione.
® Per ogni target reale ricevuto, chiama con la sua posizione.
= Chiama per aggiornare la posizione dell'antenna.

4. Visualizzazione (GUI Thread):

o |l di , al suo ciclo successivo, legge i dati "reali" aggiornati dallo
o calcola la posizione dei target reali relativa all'ownship.
o aggiorna il , che disegna i target reali (rossi), e aggiorna la posizione e

I'orientamento dell'ownship e dell'antenna.

Questo doppio flusso di dati, che converge nello e viene poi letto dalla GUI, € il cuore
del funzionamento in tempo reale dell'applicazione.

4. Analisi Dettagliata dei Moduli Principali

4/9

ARCHITECTURE.md 2025-11-11

Questa sezione fornisce una scomposizione delle responsabilita e delle interazioni per i moduli e le classi piu
importanti del progetto.

4.1. Entry Point e Orchestrazione GUI (,)

o Responsabilita: E I'entry point principale dell'applicazione. Il suo unico scopo ¢ inizializzare il
sistema di logging di base e creare un'istanza della classe , per poi avviare il loop
principale di Tkinter ()-

o ->

o Responsabilita: E la classe "Dio" della GUI, ma con responsabilita ben definite. Orchestra tutti i
componenti principali, costruisce la finestra e gestisce il ciclo di aggiornamento dell'interfaccia.

© Input/Stato Interno:

= Possiede le istanze uniche di , ,

e

= Mantiene lo corrente in memoria.
© Output/Side-effect:

= Disegna e aggiorna tutti i widget della GUI.

= Delega le azioni complesse (start/stop) al

= Salva le configurazioni tramite il

© Interazioni Principali:

. : E il cuore pulsante della GUI. A intervalli regolari, legge i dati dallo
tramite il e aggiorna il e altri widget.
= Callback degli Eventi: | metodi (es.) rispondono agli

input dell'utente e attivano la logica appropriata, solitamente delegando al controller.

4.2. Logica di Simulazione (,)
. ->

o Responsabilita: Agisce come un "regista” per le operazioni di simulazione. Gestisce la logica di
alto livello per I'avvio e l'arresto, che coinvolge piu componenti e deve avvenire in una sequenza
precisa.

© Input: Riceve richieste da

© Output/Side-effect: Crea e distrugge istanze del

© Interazioni Principali:

" Usalil per inviare comandi di controllo (reset, invio scenario).
= Usalo per impostare I'origine della simulazione.
° ->

© Responsabilita: Eseguire i calcoli cinematici della simulazione in un thread separato per non
bloccare la GUL. E il "motore" che fa avanzare il tempo per i target.

© Input: Un oggetto da simulare e un per inviare i dati.

© Output/Side-effect: Scrive continuamente gli stati aggiornati dei target nello

e invia comandi al

5/9

ARCHITECTURE.md 2025-11-11

© Interazioni Principali:

= Nel suo loop:
1. Chiama per ogni target.
2. Chiama
3. Chiama
4.3. Modelli dei Dati ()

o Responsabilita: Definisce le strutture dati fondamentali dell'applicazione: , ,
. Queste classi contengono non solo i dati, ma anche la logica per manipolarli.

° class: Contiene la logica per calcolare la propria posizione () e per
generare il percorso completo a partire dai waypoint (). E il componente che
implementa la cinematica.

o class: E un contenitore di con metodi helper per gestire l'intero gruppo (es.

su tutti i target).

° dataclass: Una semplice struttura dati per descrivere una manovra.

4.4. Hub dei Dati ()
U ->

© Responsabilita: Essere il contenitore dati centrale e thread-safe. Disaccoppia i produttori di dati
(engine, comunicatori) dai consumatori (GUI). Mantiene una cronologia limitata degli stati per
I'analisi e la visualizzazione delle tracce.

© Input: Riceve dati tramite i suoi metodi e

© Output: Fornisce dati tramite i suoi metodi

© Interazioni Principali: E il componente pili connesso. Praticamente tutti gli altri moduli principali
interagiscono con esso. La sua natura thread-safe (tutti i metodi pubblici usano un

) & cruciale per la stabilita dell'applicazione.

4.5. Comunicazione ())

. ->
© Responsabilita: Definire il contratto (interfaccia astratta) che tutti i moduli di comunicazione
devono rispettare.
L4 ->
© Responsabilita: Funge da "fabbrica" e facciata per i communicator. Crea l'istanza del
communicator corretto (SFP, TFTP, etc.) in base alla configurazione e inoltra le chiamate (es.
')
© Interazioni Principali: Viene usato dal per gestire le connessioni e
inviare comandi di controllo.
© Responsabilita: Ognuna di queste classi implementa la logica specifica per un protocollo.
, ad esempio, si affida a per la gestione a basso livello dei
pacchetti UDP e dei frammenti.

4.6. Visualizzazione ())

6/9

ARCHITECTURE.md 2025-11-11

4.7. Utilita

->

Responsabilita: E un widget complesso e auto-contenuto che si occupa esclusivamente di
disegnare lo scenario radar su un canvas Matplotlib. Gestisce la grafica di target, tracce, ownship,
settore di scansione e antenna.
Input: Riceve liste di oggetti (gia in coordinate relative) dai suoi metodi

e . Riceve I'heading dell'ownship per
orientare la vista.
Output/Side-effect: Aggiorna il canvas.

->
Responsabilita: Funzione helper "pura” che funge da adattatore. Il suo unico scopo € leggere i
dati grezzi dallo ed eseguire le trasformazioni di coordinate necessarie
per preparare i dati nel formato atteso dal
Input: L'istanza dello
Output: Un dizionario contenente le liste di pronti per essere disegnati.
()

->

Responsabilita: Abstrae la lettura e la scrittura dei file di configurazione ()e
degli scenari ()- Gestisce il path dei file e la serializzazione/deserializzazione
da/verso JSON.
Responsabilita: Configura il sistema di logging centralizzato basato su , permettendo ai

thread in background di inviare log in modo sicuro che verranno poi scritti sulla console o sul
widget della GUI dal thread principale.

5. Guida all'Estensione del Progetto

Questa sezione fornisce esempi pratici su come estendere I'applicazione con nuove funzionalita, seguendo i

principi architetturali stabiliti.

5.1. Caso d'Uso: Aggiungere un Nuovo Tipo di Manovra

Supponiamo di voler aggiungere una nuova manovra, ad esempio "Orbita attorno a un punto”.

1. Modificare i Modelli ():

o

O

Aggiungere un nuovo valore all'enum

class ManeuverType

ORBIT_POINT = "Orbit Point™

Aggiungere i campi necessari alla per supportare la nuova manovra (es.

l 1 1)'

719

ARCHITECTURE.md 2025-11-11

2. Aggiornare la Logica di Calcolo ():

© Modificare il metodo statico per gestire il nuovo
. Qui andra implementata la logica matematica per generare i punti
che descrivono l'orbita.

3. Aggiornare I'Interfaccia Utente ():
© Nella classe , creare un nUoOvo contenente i widget (Spinbox,
Combobox, etc.) per inserire i parametri della nuova manovra (raggio, centro, etc.).
© Modificare il metodo per mostrare questo nuovo frame quando
I'utente seleziona "Orbit Point" dal menu a tendina.
© Aggiornare il metodo per leggere i valori dai nuovi widget e popolare correttamente
I'oggetto quando si salva.

5.2. Caso d'Uso: Aggiungere un Nuovo Protocollo di Comunicazione

Supponiamo di voler aggiungere il supporto per un nuovo protocollo basato su TCP.

1. Creare la Classe del Communicator ():
o Creare un nuovo file nel modulo
o Definire una nuova classe che eredita da

().

© Implementare tutti i metodi astratti richiesti dall'interfaccia:

. : Logica per stabilire la connessione TCP.
. : Logica per chiudere la connessione.
. : Proprieta che restituisce lo stato della connessione.
. : Logica per serializzare e inviare lo stato iniziale dello
scenario su TCP.
. : Logica per inviare gli aggiornamenti in tempo reale.
. e : Metodi statici.
2. Aggiornare il Gestore ():
o Nella classe , modificare il metodo per

riconoscere il nuovo tipo "tcp".

from target_simulator.core.tcp_communicator import TCPCommunicator

elif comm_type == "tcp":
communicator = TCPCommunicator()
config data = config.get("tcp", {})

3. Aggiornare l'Interfaccia Utente ():
© Aggiungere "TCP" alla lista dei nel del tipo di connessione.
© Creare un nuovo (es.) con i widget per i parametri TCP (IP, porta).

8/9

ARCHITECTURE.md 2025-11-11

© Aggiungere una nuova scheda al per ospitare il

© Aggiornare i metodi e per leggere e scrivere la nuova sezione di
configurazione nel dizionario .

© Aggiungere la logica per per il tipo "TCP".

5.3. Flusso di Debug Consigliato
Quando si affronta un bug o si sviluppa una nuova funzionalita, si consiglia il seguente approccio:

1. Isolare il Problema: Il bug ¢ nella visualizzazione (GUI), nel calcolo (Engine) o nella comunicazione
(Communicator)? La separazione delle responsabilita dovrebbe aiutare a identificare il dominio del
problema.

2. Aumentare il Livello di Log: Usare la finestra per impostare a il
livello di log del modulo sospetto. Ad esempio:

© Problemi di visualizzazione? Abilita il debug per e

© Problemi di comunicazione? Abilita il debug per
e
3. Usare gli Strumenti di Debug:

o L e fondamentale per problemi di comunicazione. Controlla la scheda
per vedere esattamente cosa viene ricevuto e la scheda per vedere come viene
interpretato.
o Usail per inviare comandi isolati e testare specifiche risposte del
sistema radar senza eseguire uno scenario completo.
4. Ispezionare lo : Se c'e una discrepanza tra cio che il motore dovrebbe calcolare
e cio che la GUI mostra, il problema e probabilmente nel . Se i dati nello stesso sono
sbagliati, il problema & a monte (nel o nel).

Seguendo questi principi e utilizzando gli strumenti forniti, la manutenzione e I'estensione dell'applicazione
dovrebbero risultare pit semplici e strutturate.

9/9

