
ARCHITECTURE.md 2025-11-11

1 / 9

Guida all'Architettura e al Codice Sorgente del Radar
Target Simulator
Questo documento descrive l'architettura interna, le decisioni di progettazione e la struttura del codice
sorgente dell'applicazione Radar Target Simulator. È destinato agli sviluppatori e agli ingegneri che
necessitano di comprendere, manutenere o estendere il software.

1. Filosofia del Progetto e Principi Architetturali
L'architettura del software si basa su alcuni principi chiave volti a garantire manutenibilità, estendibilità e
robustezza.

1.1. Separation of Concerns (SoC)

Il principio fondamentale è la netta separazione delle responsabilità tra i vari componenti del sistema:

Interfaccia Utente (GUI): Responsabile solo della presentazione dei dati e della cattura dell'input
utente. Non contiene logica di business.
Logica di Simulazione (Core/Engine): Responsabile del calcolo della cinematica dei target. È
completamente agnostica rispetto a come i dati vengono visualizzati o trasmessi.
Comunicazione (Communicators): Responsabile della traduzione dei comandi di alto livello in
messaggi specifici di un protocollo e della gestione della comunicazione a basso livello.

Questa separazione permette, ad esempio, di sostituire l'interfaccia basata su Tkinter con una basata su web
senza modificare il motore di simulazione, o di aggiungere un nuovo protocollo di comunicazione senza
toccare la GUI.

1.2. Thread Safety e Comunicazione tra Thread

L'applicazione è multi-threaded per garantire che l'interfaccia utente rimanga reattiva durante le operazioni
potenzialmente lunghe (come la simulazione o l'attesa di pacchetti di rete).

GUI Thread (Main Thread): Esegue il loop di Tkinter e gestisce tutti i widget.
Simulation Thread: Esegue il loop del SimulationEngine per aggiornare lo stato dei target a
intervalli regolari.
Communication Thread(s): Componenti come SfpTransport avviano i propri thread per l'ascolto non
bloccante di pacchetti UDP.

Per garantire una comunicazione sicura tra questi thread, l'architettura si affida a due meccanismi principali:

1. SimulationStateHub: Un contenitore dati centralizzato e thread-safe (protetto da threading.Lock).
Funge da "single source of truth" per lo stato della simulazione. Tutti i thread scrivono e leggono da
questo hub, che agisce come un intermediario sicuro, disaccoppiando i produttori di dati (motore di
simulazione, ricevitore di rete) dai consumatori (GUI).

2. queue.Queue: Utilizzata per inviare notifiche o dati che richiedono un'elaborazione immediata dalla
GUI (es. aggiornamenti per finestre di debug o notifiche di fine simulazione).

1.3. Modularità e Astrazione

ARCHITECTURE.md 2025-11-11

2 / 9

Per facilitare l'estensione, il codice fa uso di astrazioni e interfacce. L'esempio più significativo è l'interfaccia
CommunicatorInterface. Qualsiasi protocollo di comunicazione (Seriale, TFTP, SFP, o futuri) deve
semplicemente implementare i metodi definiti da questa classe base (connect, disconnect, send_scenario,
etc.). Il resto dell'applicazione interagisce solo con l'interfaccia, rendendo l'aggiunta di un nuovo protocollo
un'operazione a basso impatto.

1.4. Standard e Convenzioni

Il codice aderisce alle seguenti convenzioni per garantire leggibilità e coerenza:

Stile del Codice: Segue lo standard PEP8.
Linguaggio: Nomi di funzioni, variabili, commenti e docstring sono scritti in inglese.
Tipizzazione: Viene fatto uso di type hints (secondo PEP 484) per migliorare la robustezza e la
comprensibilità del codice.

2. Struttura delle Cartelle del Progetto
Il codice sorgente è organizzato in un pacchetto Python (target_simulator) con una struttura modulare che
riflette la separazione delle responsabilità.

├── doc/ # Documentazione (manuali, guide come questa)
│ ├── manual/
│ └── user_guide/
├── scenarios/ # File JSON contenenti gli scenari predefiniti
├── target_simulator/ # Codice sorgente principale del pacchetto
│ ├── analysis/ # Moduli per l'analisi dati (es. PerformanceAnalyzer,
SimulationStateHub)
│ ├── core/ # Cuore della logica di business e simulazione
│ │ ├── models.py # Definizioni dei dati (Target, Waypoint, Scenario)
│ │ ├── simulation_engine.py # Il motore di calcolo della simulazione
│ │ └── ... (moduli di comunicazione: sfp, serial, tftp)
│ ├── gui/ # Componenti dell'interfaccia utente (widget Tkinter)
│ │ ├── main_view.py # Classe principale della finestra dell'applicazione
│ │ ├── ppi_display.py # Widget per la visualizzazione radar
│ │ └── ... (altre finestre e widget personalizzati)
│ ├── simulation/ # Classi di alto livello per l'orchestrazione (es.
SimulationController)
│ ├── utils/ # Funzioni e classi di utilità trasversali
│ │ ├── config_manager.py # Gestione dei file di configurazione
│ │ ├── logger.py # Configurazione del sistema di logging
│ │ └── ... (altre utilità)
│ ├── __init__.py # Entry point del pacchetto
│ ├── __main__.py # Entry point per l'esecuzione dell'applicazione
(`python -m target_simulator`)
│ └── config.py # Configurazioni globali e costanti (es.
LOGGING_CONFIG)
├── README.md # Readme del progetto
└── requirements.txt # Dipendenze Python

ARCHITECTURE.md 2025-11-11

3 / 9

3. Mappa dei Componenti Chiave e Flusso dei Dati
Comprendere come i dati fluiscono attraverso l'applicazione è fondamentale per capire il suo funzionamento.
Questa sezione descrive le interazioni tra i componenti principali durante due operazioni chiave: l'esecuzione
di una simulazione e la ricezione di dati reali.

3.1. Diagramma Architetturale e Flusso Dati

Il seguente diagramma illustra le relazioni e il flusso di informazioni tra i componenti chiave del sistema.

(Placeholder per l'immagine)

Descrizione dell'Immagine: architettura_dettagliata.png (Questo è il diagramma descritto nel capitolo
precedente del manuale tecnico, che possiamo riutilizzare e dettagliare qui. Mostra i blocchi MainView (GUI),
SimulationController, SimulationEngine, SimulationStateHub, CommunicatorManager e le loro
interazioni).

3.2. Flusso 1: Esecuzione di una Simulazione (Dati in Uscita)

Questo flusso descrive cosa accade dal momento in cui l'utente preme "Start Live" fino all'invio dei dati dei
target.

1. Azione Utente (GUI Thread):

L'utente clicca il pulsante Start Live sulla MainView.
MainView delega la richiesta al SimulationController. Per evitare avvii multipli, imposta un
flag (_start_in_progress_main) e aggiorna lo stato dei pulsanti.

2. Orchestrazione (SimulationController - Nuovo Thread):

Il SimulationController avvia un thread in background per non bloccare la GUI.
Reset Radar: Chiama il CommunicatorManager per inviare un comando di reset al device under
test.
Cattura Origine: Legge lo stato corrente dell'ownship dallo SimulationStateHub e lo salva
come "origine della simulazione" fissa chiamando set_simulation_origin().
Invio Scenario: Chiama il CommunicatorManager per inviare lo stato iniziale di tutti i target.
Avvio Motore: Se i passaggi precedenti hanno successo, crea e avvia un'istanza del
SimulationEngine in un nuovo thread.

3. Ciclo di Simulazione (SimulationEngine - Thread di Simulazione):

Il SimulationEngine entra nel suo loop principale, che si ripete a una frequenza fissa (es. 20
Hz).
Ad ogni "tick": a. Calcola il delta_time dall'ultimo tick. b. Chiama
scenario.update_state(delta_time) per aggiornare la posizione di ogni target. c. Scrive il
nuovo stato (timestamp, x, y, z) di ogni target nello SimulationStateHub chiamando
add_simulated_state().
A intervalli più lenti (es. 1 Hz), definiti dall'utente: a. Prepara una lista di comandi di
aggiornamento (es. tgtset o payload JSON). b. Invia i comandi tramite l'interfaccia del
CommunicatorInterface.

ARCHITECTURE.md 2025-11-11

4 / 9

4. Visualizzazione (GUI Thread):

Il _gui_refresh_loop di MainView si esegue periodicamente (es. ogni 40 ms).
Chiama build_display_data() (in ppi_adapter.py).
build_display_data() legge dallo SimulationStateHub:

Gli stati più recenti dei target simulati.
L'origine della simulazione.
Lo stato corrente dell'ownship.

Esegue la trasformazione di coordinate (rotazione + traslazione) per calcolare la posizione dei
target simulati relativa all'ownship corrente.
MainView passa i dati trasformati al PPIDisplay, che aggiorna il canvas.

3.3. Flusso 2: Ricezione di Dati Reali (Dati in Ingresso)

Questo flusso descrive come i dati inviati dal radar vengono ricevuti, processati e visualizzati.

1. Ricezione di Rete (Thread di Comunicazione):

Il SfpTransport (o un altro componente di comunicazione) ha un thread in background in
ascolto su una porta UDP.
Quando riceve un pacchetto, lo processa (es. riassembla i frammenti SFP).

2. Routing del Payload (Thread di Comunicazione):

Una volta che un payload completo è disponibile, il SfpTransport lo passa al
DebugPayloadRouter in base al suo Flow ID.
Il DebugPayloadRouter ispeziona il payload. Se è un messaggio di stato del radar (es. Flow ID
'R'): a. Decodifica il payload binario in una struttura dati (SfpRisStatusPayload). b. Estrae i dati
dell'ownship (posizione, heading, etc.) e dei target reali.

3. Aggiornamento dello Stato (Thread di Comunicazione):

Il DebugPayloadRouter aggiorna lo SimulationStateHub (che è thread-safe):
Chiama set_ownship_state() con i nuovi dati di navigazione.
Per ogni target reale ricevuto, chiama add_real_state() con la sua posizione.
Chiama set_antenna_azimuth() per aggiornare la posizione dell'antenna.

4. Visualizzazione (GUI Thread):

Il _gui_refresh_loop di MainView, al suo ciclo successivo, legge i dati "reali" aggiornati dallo
SimulationStateHub.
build_display_data() calcola la posizione dei target reali relativa all'ownship.
MainView aggiorna il PPIDisplay, che disegna i target reali (rossi), e aggiorna la posizione e
l'orientamento dell'ownship e dell'antenna.

Questo doppio flusso di dati, che converge nello SimulationStateHub e viene poi letto dalla GUI, è il cuore
del funzionamento in tempo reale dell'applicazione.

4. Analisi Dettagliata dei Moduli Principali

ARCHITECTURE.md 2025-11-11

5 / 9

Questa sezione fornisce una scomposizione delle responsabilità e delle interazioni per i moduli e le classi più
importanti del progetto.

4.1. Entry Point e Orchestrazione GUI (__main__.py, gui/main_view.py)

target_simulator/__main__.py

Responsabilità: È l'entry point principale dell'applicazione. Il suo unico scopo è inizializzare il
sistema di logging di base e creare un'istanza della classe MainView, per poi avviare il loop
principale di Tkinter (app.mainloop()).

target_simulator/gui/main_view.py -> MainView(tk.Tk)

Responsabilità: È la classe "Dio" della GUI, ma con responsabilità ben definite. Orchestra tutti i
componenti principali, costruisce la finestra e gestisce il ciclo di aggiornamento dell'interfaccia.
Input/Stato Interno:

Possiede le istanze uniche di ConfigManager, SimulationStateHub,
CommunicatorManager e SimulationController.
Mantiene lo Scenario corrente in memoria.

Output/Side-effect:
Disegna e aggiorna tutti i widget della GUI.
Delega le azioni complesse (start/stop) al SimulationController.
Salva le configurazioni tramite il ConfigManager.

Interazioni Principali:
_gui_refresh_loop: È il cuore pulsante della GUI. A intervalli regolari, legge i dati dallo
SimulationStateHub tramite il ppi_adapter e aggiorna il PPIDisplay e altri widget.
Callback degli Eventi: I metodi _on_* (es. _on_start_simulation) rispondono agli
input dell'utente e attivano la logica appropriata, solitamente delegando al controller.

4.2. Logica di Simulazione (simulation/, core/simulation_engine.py)

target_simulator/simulation/simulation_controller.py -> SimulationController

Responsabilità: Agisce come un "regista" per le operazioni di simulazione. Gestisce la logica di
alto livello per l'avvio e l'arresto, che coinvolge più componenti e deve avvenire in una sequenza
precisa.
Input: Riceve richieste da MainView.
Output/Side-effect: Crea e distrugge istanze del SimulationEngine.
Interazioni Principali:

Usa il CommunicatorManager per inviare comandi di controllo (reset, invio scenario).
Usa lo SimulationStateHub per impostare l'origine della simulazione.

target_simulator/core/simulation_engine.py -> SimulationEngine(threading.Thread)

Responsabilità: Eseguire i calcoli cinematici della simulazione in un thread separato per non
bloccare la GUI. È il "motore" che fa avanzare il tempo per i target.
Input: Un oggetto Scenario da simulare e un CommunicatorInterface per inviare i dati.
Output/Side-effect: Scrive continuamente gli stati aggiornati dei target nello
SimulationStateHub e invia comandi al CommunicatorInterface.

ARCHITECTURE.md 2025-11-11

6 / 9

Interazioni Principali:
Nel suo run() loop:

1. Chiama target.update_state() per ogni target.
2. Chiama simulation_hub.add_simulated_state().
3. Chiama communicator.send_commands().

4.3. Modelli dei Dati (core/models.py)

target_simulator/core/models.py
Responsabilità: Definisce le strutture dati fondamentali dell'applicazione: Scenario, Target,
Waypoint. Queste classi contengono non solo i dati, ma anche la logica per manipolarli.
Target class: Contiene la logica per calcolare la propria posizione (update_state) e per
generare il percorso completo a partire dai waypoint (_generate_path). È il componente che
implementa la cinematica.
Scenario class: È un contenitore di Target con metodi helper per gestire l'intero gruppo (es.
update_state su tutti i target).
Waypoint dataclass: Una semplice struttura dati per descrivere una manovra.

4.4. Hub dei Dati (analysis/simulation_state_hub.py)

target_simulator/analysis/simulation_state_hub.py -> SimulationStateHub
Responsabilità: Essere il contenitore dati centrale e thread-safe. Disaccoppia i produttori di dati
(engine, comunicatori) dai consumatori (GUI). Mantiene una cronologia limitata degli stati per
l'analisi e la visualizzazione delle tracce.
Input: Riceve dati tramite i suoi metodi add_*_state() e set_*_state().
Output: Fornisce dati tramite i suoi metodi get_*().
Interazioni Principali: È il componente più connesso. Praticamente tutti gli altri moduli principali
interagiscono con esso. La sua natura thread-safe (tutti i metodi pubblici usano un
threading.Lock) è cruciale per la stabilità dell'applicazione.

4.5. Comunicazione (core/communicator_manager.py, core/*_communicator.py)

target_simulator/core/communicator_interface.py -> CommunicatorInterface
Responsabilità: Definire il contratto (interfaccia astratta) che tutti i moduli di comunicazione
devono rispettare.

target_simulator/core/communicator_manager.py -> CommunicatorManager
Responsabilità: Funge da "fabbrica" e facciata per i communicator. Crea l'istanza del
communicator corretto (SFP, TFTP, etc.) in base alla configurazione e inoltra le chiamate (es.
connect, send_scenario).
Interazioni Principali: Viene usato dal SimulationController per gestire le connessioni e
inviare comandi di controllo.

SFPCommunicator, TFTPCommunicator, SerialCommunicator
Responsabilità: Ognuna di queste classi implementa la logica specifica per un protocollo.
SFPCommunicator, ad esempio, si affida a SfpTransport per la gestione a basso livello dei
pacchetti UDP e dei frammenti.

4.6. Visualizzazione (gui/ppi_display.py, gui/ppi_adapter.py)

ARCHITECTURE.md 2025-11-11

7 / 9

target_simulator/gui/ppi_display.py -> PPIDisplay
Responsabilità: È un widget complesso e auto-contenuto che si occupa esclusivamente di
disegnare lo scenario radar su un canvas Matplotlib. Gestisce la grafica di target, tracce, ownship,
settore di scansione e antenna.
Input: Riceve liste di oggetti Target (già in coordinate relative) dai suoi metodi
update_simulated_targets e update_real_targets. Riceve l'heading dell'ownship per
orientare la vista.
Output/Side-effect: Aggiorna il canvas.

target_simulator/gui/ppi_adapter.py -> build_display_data
Responsabilità: Funzione helper "pura" che funge da adattatore. Il suo unico scopo è leggere i
dati grezzi dallo SimulationStateHub ed eseguire le trasformazioni di coordinate necessarie
per preparare i dati nel formato atteso dal PPIDisplay.
Input: L'istanza dello SimulationStateHub.
Output: Un dizionario contenente le liste di Target pronti per essere disegnati.

4.7. Utilità (utils/)

target_simulator/utils/config_manager.py -> ConfigManager

Responsabilità: Abstrae la lettura e la scrittura dei file di configurazione (settings.json) e
degli scenari (scenarios.json). Gestisce il path dei file e la serializzazione/deserializzazione
da/verso JSON.

target_simulator/utils/logger.py

Responsabilità: Configura il sistema di logging centralizzato basato su Queue, permettendo ai
thread in background di inviare log in modo sicuro che verranno poi scritti sulla console o sul
widget della GUI dal thread principale.

5. Guida all'Estensione del Progetto
Questa sezione fornisce esempi pratici su come estendere l'applicazione con nuove funzionalità, seguendo i
principi architetturali stabiliti.

5.1. Caso d'Uso: Aggiungere un Nuovo Tipo di Manovra

Supponiamo di voler aggiungere una nuova manovra, ad esempio "Orbita attorno a un punto".

1. Modificare i Modelli (core/models.py):

Aggiungere un nuovo valore all'enum ManeuverType:

class ManeuverType(Enum):
 # ...
 ORBIT_POINT = "Orbit Point"

Aggiungere i campi necessari alla dataclass Waypoint per supportare la nuova manovra (es.
orbit_center_x, orbit_center_y, orbit_radius_nm, orbit_direction).

ARCHITECTURE.md 2025-11-11

8 / 9

2. Aggiornare la Logica di Calcolo (core/models.py):

Modificare il metodo statico Target.generate_path_from_waypoints per gestire il nuovo
ManeuverType.ORBIT_POINT. Qui andrà implementata la logica matematica per generare i punti
(t, x, y, z) che descrivono l'orbita.

3. Aggiornare l'Interfaccia Utente (gui/waypoint_editor_window.py):

Nella classe WaypointEditorWindow, creare un nuovo ttk.Frame contenente i widget (Spinbox,
Combobox, etc.) per inserire i parametri della nuova manovra (raggio, centro, etc.).
Modificare il metodo _on_maneuver_type_change per mostrare questo nuovo frame quando
l'utente seleziona "Orbit Point" dal menu a tendina.
Aggiornare il metodo _on_ok per leggere i valori dai nuovi widget e popolare correttamente
l'oggetto Waypoint quando si salva.

5.2. Caso d'Uso: Aggiungere un Nuovo Protocollo di Comunicazione

Supponiamo di voler aggiungere il supporto per un nuovo protocollo basato su TCP.

1. Creare la Classe del Communicator (core/tcp_communicator.py):

Creare un nuovo file tcp_communicator.py nel modulo core.
Definire una nuova classe TCPCommunicator che eredita da CommunicatorInterface
(core/communicator_interface.py).
Implementare tutti i metodi astratti richiesti dall'interfaccia:

connect(self, config): Logica per stabilire la connessione TCP.
disconnect(self): Logica per chiudere la connessione.
is_open(self): Proprietà che restituisce lo stato della connessione.
send_scenario(self, scenario): Logica per serializzare e inviare lo stato iniziale dello
scenario su TCP.
send_commands(self, commands): Logica per inviare gli aggiornamenti in tempo reale.
test_connection(config) e list_available_ports(): Metodi statici.

2. Aggiornare il Gestore (core/communicator_manager.py):

Nella classe CommunicatorManager, modificare il metodo _setup_communicator per
riconoscere il nuovo tipo "tcp".

In _setup_communicator
from target_simulator.core.tcp_communicator import TCPCommunicator
...
elif comm_type == "tcp":
 communicator = TCPCommunicator()
 config_data = config.get("tcp", {})

3. Aggiornare l'Interfaccia Utente (gui/connection_settings_window.py):

Aggiungere "TCP" alla lista dei values nel ttk.Combobox del tipo di connessione.
Creare un nuovo ttk.Frame (es. tcp_frame) con i widget per i parametri TCP (IP, porta).

ARCHITECTURE.md 2025-11-11

9 / 9

Aggiungere una nuova scheda al ttk.Notebook per ospitare il tcp_frame.
Aggiornare i metodi _load_settings e _on_save per leggere e scrivere la nuova sezione di
configurazione tcp nel dizionario connection_config.
Aggiungere la logica per _test_connection per il tipo "TCP".

5.3. Flusso di Debug Consigliato

Quando si affronta un bug o si sviluppa una nuova funzionalità, si consiglia il seguente approccio:

1. Isolare il Problema: Il bug è nella visualizzazione (GUI), nel calcolo (Engine) o nella comunicazione
(Communicator)? La separazione delle responsabilità dovrebbe aiutare a identificare il dominio del
problema.

2. Aumentare il Livello di Log: Usare la finestra Debug -> Logger Levels... per impostare a DEBUG il
livello di log del modulo sospetto. Ad esempio:

Problemi di visualizzazione? Abilita il debug per target_simulator.gui.ppi_display e
target_simulator.gui.ppi_adapter.
Problemi di comunicazione? Abilita il debug per target_simulator.core.sfp_communicator
e target_simulator.core.sfp_transport.

3. Usare gli Strumenti di Debug:
L'SFP Packet Inspector è fondamentale per problemi di comunicazione. Controlla la scheda
Raw per vedere esattamente cosa viene ricevuto e la scheda RIS per vedere come viene
interpretato.
Usa il Simple Target Sender per inviare comandi isolati e testare specifiche risposte del
sistema radar senza eseguire uno scenario completo.

4. Ispezionare lo SimulationStateHub: Se c'è una discrepanza tra ciò che il motore dovrebbe calcolare
e ciò che la GUI mostra, il problema è probabilmente nel ppi_adapter. Se i dati nello Hub stesso sono
sbagliati, il problema è a monte (nel SimulationEngine o nel DebugPayloadRouter).

Seguendo questi principi e utilizzando gli strumenti forniti, la manutenzione e l'estensione dell'applicazione
dovrebbero risultare più semplici e strutturate.

