# target_simulator/gui/performance_analysis_window.py """ Performance Analysis Window for detailed packet processing diagnostics. This window provides in-depth visualization of packet processing performance including timing breakdowns, spike detection, and statistical analysis. """ import tkinter as tk from tkinter import ttk, messagebox import logging import csv from typing import Optional, Dict, Any, List from matplotlib.figure import Figure from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk import statistics logger = logging.getLogger(__name__) class PerformanceAnalysisWindow(tk.Toplevel): """ Dedicated window for analyzing packet processing performance data from a CSV file. Displays: - Time-series plot of component processing times - Statistical summary table - Distribution histogram """ def __init__(self, parent, performance_csv_path: str): """ Initialize the performance analysis window. Args: parent: Parent Tkinter window performance_csv_path: Path to the .perf.csv file to analyze. """ super().__init__(parent) self.performance_csv_path = performance_csv_path self.performance_samples: List[Dict[str, Any]] = [] self.metadata: Dict[str, str] = {} self.scenario_name = "Unknown" self.title("Performance Analysis") # Title will be updated after loading data self.geometry("1200x900") # Show loading dialog while creating widgets self._show_loading_and_create_widgets() def _load_data_from_csv(self): """Load performance samples and metadata from the specified CSV file.""" try: with open(self.performance_csv_path, "r", encoding="utf-8") as f: # Read metadata from commented lines for line in f: if line.startswith("#"): try: key, value = line.strip("# ").strip().split(":", 1) self.metadata[key.strip()] = value.strip() except ValueError: continue # Ignore malformed metadata lines else: break # First non-comment line is the header # Reset file pointer to read from the start for the DictReader f.seek(0) # Find the first non-comment line to pass to DictReader csv_content = [line for line in f if not line.startswith("#")] if not csv_content: raise ValueError("CSV file contains no data rows.") reader = csv.DictReader(csv_content) # Convert string values to float self.performance_samples = [] for row in reader: sample = {} for key, value in row.items(): try: sample[key] = float(value) except (ValueError, TypeError): sample[key] = value # Keep as string if conversion fails self.performance_samples.append(sample) self.scenario_name = self.metadata.get("Scenario Name", "Unknown") self.title(f"Performance Analysis - {self.scenario_name}") except Exception as e: # Propagate exception to be caught by the loading dialog handler raise IOError(f"Failed to read or parse performance CSV file:\n{e}") def _extract_data_arrays(self): """Extract data arrays from the loaded performance samples.""" if not self.performance_samples: self.timestamps = [] self.total_ms = [] self.parse_ms = [] self.hub_ms = [] self.archive_ms = [] self.listener_ms = [] self.clock_ms = [] return # Dynamically get keys to support future additions self.timestamps = [s.get('timestamp', 0.0) for s in self.performance_samples] self.total_ms = [s.get('total_ms', 0.0) for s in self.performance_samples] self.parse_ms = [s.get('parse_ms', 0.0) for s in self.performance_samples] self.hub_ms = [s.get('hub_ms', 0.0) for s in self.performance_samples] self.archive_ms = [s.get('archive_ms', 0.0) for s in self.performance_samples] self.listener_ms = [s.get('listener_ms', 0.0) for s in self.performance_samples] self.clock_ms = [s.get('clock_ms', 0.0) for s in self.performance_samples] def _show_loading_and_create_widgets(self): """Show loading dialog and create widgets asynchronously.""" loading_dialog = tk.Toplevel(self) loading_dialog.title("Loading Performance Data") loading_dialog.geometry("350x120") loading_dialog.transient(self) loading_dialog.grab_set() loading_dialog.update_idletasks() x = self.winfo_x() + (self.winfo_width() // 2) - (loading_dialog.winfo_width() // 2) y = self.winfo_y() + (self.winfo_height() // 2) - (loading_dialog.winfo_height() // 2) loading_dialog.geometry(f"+{x}+{y}") label_text = tk.StringVar(value="Loading performance data...") ttk.Label( loading_dialog, textvariable=label_text, font=("Segoe UI", 10) ).pack(pady=20) progress_label = ttk.Label(loading_dialog, text="Please wait...") progress_label.pack(pady=5) progress_bar = ttk.Progressbar(loading_dialog, mode='indeterminate', length=300) progress_bar.pack(pady=10) progress_bar.start(10) def load_and_display(): try: progress_label.config(text="Reading performance file...") self.update() # Load data from CSV self._load_data_from_csv() label_text.set(f"Processing {len(self.performance_samples):,} samples...") progress_label.config(text="Extracting data arrays...") self.update() # Extract data into lists for plotting and stats self._extract_data_arrays() progress_label.config(text="Computing statistics...") self.update() # Compute statistics self._compute_statistics() progress_label.config(text="Creating widgets...") self.update() # Create UI self._create_widgets() progress_label.config(text="Rendering plots...") self.update() # Populate data self._populate_plots() loading_dialog.destroy() except Exception as e: loading_dialog.destroy() messagebox.showerror( "Performance Analysis Error", f"An error occurred while loading performance data:\n{e}", parent=self ) self.destroy() self.after(100, load_and_display) def _compute_statistics(self): """Compute statistical metrics from performance data.""" if not self.total_ms: self.stats = {} return self.stats = { 'total_samples': len(self.total_ms), 'total': { 'mean': statistics.mean(self.total_ms), 'median': statistics.median(self.total_ms), 'stdev': statistics.stdev(self.total_ms) if len(self.total_ms) > 1 else 0.0, 'min': min(self.total_ms), 'max': max(self.total_ms), 'p95': self._percentile(self.total_ms, 95), 'p99': self._percentile(self.total_ms, 99), }, 'parse': { 'mean': statistics.mean(self.parse_ms), 'max': max(self.parse_ms), }, 'hub': { 'mean': statistics.mean(self.hub_ms), 'max': max(self.hub_ms), }, 'archive': { 'mean': statistics.mean(self.archive_ms), 'max': max(self.archive_ms), }, 'listener': { 'mean': statistics.mean(self.listener_ms), 'max': max(self.listener_ms), }, 'clock': { 'mean': statistics.mean(self.clock_ms), 'max': max(self.clock_ms), }, } self.stats['spike_count'] = sum(1 for t in self.total_ms if t > 100) self.stats['spike_percentage'] = (self.stats['spike_count'] / len(self.total_ms) * 100) if self.total_ms else 0.0 if self.stats['total']['max'] > 0: max_idx = self.total_ms.index(self.stats['total']['max']) components = { 'parse': self.parse_ms[max_idx], 'hub': self.hub_ms[max_idx], 'archive': self.archive_ms[max_idx], 'listener': self.listener_ms[max_idx], 'clock': self.clock_ms[max_idx], } self.stats['max_component'] = max(components, key=components.get) else: self.stats['max_component'] = "N/A" def _percentile(self, data: List[float], p: float) -> float: """Calculate percentile of data.""" if not data: return 0.0 sorted_data = sorted(data) k = (len(sorted_data) - 1) * (p / 100.0) f = int(k) c = f + 1 if c >= len(sorted_data): return sorted_data[-1] d0 = sorted_data[f] d1 = sorted_data[c] return d0 + (d1 - d0) * (k - f) def _create_widgets(self): """Create the UI widgets.""" main_pane = ttk.PanedWindow(self, orient=tk.VERTICAL) main_pane.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) top_container = ttk.Frame(main_pane) main_pane.add(top_container, weight=1) stats_frame = ttk.LabelFrame(top_container, text="Performance Statistics", padding=10) stats_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=(0, 5)) self._create_stats_table(stats_frame) self._create_info_panel(top_container) plots_frame = ttk.Frame(main_pane) main_pane.add(plots_frame, weight=4) self._create_plots(plots_frame) def _create_info_panel(self, parent): """Create an informational panel explaining the metrics.""" info_frame = ttk.LabelFrame(parent, text="ℹ About Performance Analysis", padding=10) info_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=False) info_text = ( "This window analyzes radar packet\n" "processing times during simulation.\n\n" "📊 Measured Components:\n" "• Parse: Decode raw SFP payload\n" " (ctypes binary deserialization)\n" "• Hub: Update SimulationStateHub\n" " (thread-safe data buffer)\n" "• Archive: Persist data to JSON file\n" "• Listener: Broadcast events to GUI\n" "• Clock: Synchronize timestamps\n\n" "⚠ Spikes (>100ms):\n" "Critical slowdowns - likely Garbage\n" "Collection, disk I/O, or lock contention.\n\n" "🎯 Bottleneck:\n" "Component responsible for the\n" "maximum recorded delay." ) info_label = ttk.Label(info_frame, text=info_text, justify=tk.LEFT, font=("Segoe UI", 9), wraplength=320) info_label.pack(anchor=tk.W) def _create_stats_table(self, parent): """Create the statistics table.""" tree_frame = ttk.Frame(parent) tree_frame.pack(fill=tk.BOTH, expand=True) scrollbar = ttk.Scrollbar(tree_frame) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) columns = ("Metric", "Value", "Details") self.stats_tree = ttk.Treeview( tree_frame, columns=columns, show="headings", height=12, yscrollcommand=scrollbar.set ) scrollbar.config(command=self.stats_tree.yview) self.stats_tree.heading("Metric", text="Metric") self.stats_tree.heading("Value", text="Value") self.stats_tree.heading("Details", text="Details") self.stats_tree.column("Metric", width=200, anchor='w') self.stats_tree.column("Value", width=150, anchor='e') self.stats_tree.column("Details", width=300, anchor='w') self.stats_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) self._populate_stats_table() def _populate_stats_table(self): """Populate the statistics table with computed metrics.""" if not self.stats: self.stats_tree.insert("", "end", values=("No Data", "N/A", "")) return self.stats_tree.insert("", "end", values=( "Total Samples", f"{self.stats['total_samples']:,}", "" )) self.stats_tree.insert("", "end", values=( "Spikes (>100ms)", f"{self.stats['spike_count']:,}", f"{self.stats['spike_percentage']:.2f}% of packets" )) self.stats_tree.insert("", "end", values=("", "", "")) self.stats_tree.insert("", "end", values=( "Total Processing Time", "", "" ), tags=("header",)) total = self.stats['total'] self.stats_tree.insert("", "end", values=( " Mean", f"{total['mean']:.3f} ms", "" )) self.stats_tree.insert("", "end", values=( " Median", f"{total['median']:.3f} ms", "" )) self.stats_tree.insert("", "end", values=( " Std Dev", f"{total['stdev']:.3f} ms", "" )) self.stats_tree.insert("", "end", values=( " Min / Max", f"{total['min']:.3f} / {total['max']:.1f} ms", "" )) self.stats_tree.insert("", "end", values=( " 95th Percentile", f"{total['p95']:.3f} ms", "" )) self.stats_tree.insert("", "end", values=( " 99th Percentile", f"{total['p99']:.3f} ms", "" )) self.stats_tree.insert("", "end", values=("", "", "")) self.stats_tree.insert("", "end", values=( "Component Breakdown", "", "" ), tags=("header",)) for comp_name in ['parse', 'hub', 'archive', 'listener', 'clock']: if comp_name in self.stats: comp = self.stats[comp_name] bottleneck = " ⚠ BOTTLENECK" if comp_name == self.stats['max_component'] else "" self.stats_tree.insert("", "end", values=( f" {comp_name.capitalize()}", f"{comp['mean']:.3f} ms", f"Max: {comp['max']:.1f} ms{bottleneck}" )) self.stats_tree.tag_configure("header", font=("Segoe UI", 9, "bold")) def _create_plots(self, parent): """Create matplotlib plots.""" self.fig = Figure(figsize=(10, 8), dpi=100) gs = self.fig.add_gridspec(2, 1, height_ratios=[2, 1], hspace=0.35, top=0.95) self.ax_timeseries = self.fig.add_subplot(gs[0, 0]) self.ax_histogram = self.fig.add_subplot(gs[1, 0]) canvas_frame = ttk.Frame(parent) canvas_frame.pack(fill=tk.BOTH, expand=True) toolbar_frame = ttk.Frame(canvas_frame) toolbar_frame.pack(side=tk.TOP, fill=tk.X) self.canvas = FigureCanvasTkAgg(self.fig, master=canvas_frame) toolbar = NavigationToolbar2Tk(self.canvas, toolbar_frame) toolbar.update() self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) def _populate_plots(self): """Populate the plots with performance data.""" if not self.timestamps: self.canvas.draw() return # Time series plot self.ax_timeseries.clear() self.ax_timeseries.set_title("Packet Processing Time Over Simulation") self.ax_timeseries.set_xlabel("Time (s)") self.ax_timeseries.set_ylabel("Processing Time (ms)") self.ax_timeseries.plot(self.timestamps, self.hub_ms, label='Hub', lw=1.5, alpha=0.8) self.ax_timeseries.plot(self.timestamps, self.archive_ms, label='Archive', lw=1.5, alpha=0.8) self.ax_timeseries.plot(self.timestamps, self.listener_ms, label='Listener', lw=1.5, alpha=0.8) self.ax_timeseries.plot(self.timestamps, self.parse_ms, label='Parse', lw=1, alpha=0.7) self.ax_timeseries.plot(self.timestamps, self.clock_ms, label='Clock', lw=1, alpha=0.7) self.ax_timeseries.axhline(y=100, color='r', linestyle='--', lw=1, alpha=0.5, label='100ms Threshold') self.ax_timeseries.legend(loc='upper right', fontsize=9) self.ax_timeseries.grid(True, alpha=0.3) if max(self.total_ms, default=0) > 200: self.ax_timeseries.set_yscale('log') self.ax_timeseries.set_ylabel("Processing Time (ms, log scale)") # Histogram self.ax_histogram.clear() self.ax_histogram.set_title("Processing Time Distribution") self.ax_histogram.set_xlabel("Processing Time (ms)") self.ax_histogram.set_ylabel("Frequency") normal_times = [t for t in self.total_ms if t <= 100] spike_times = [t for t in self.total_ms if t > 100] if normal_times: self.ax_histogram.hist(normal_times, bins=50, alpha=0.7, label=f'Normal ({len(normal_times)})') if spike_times: self.ax_histogram.hist(spike_times, bins=20, alpha=0.7, label=f'Spikes ({len(spike_times)})') if normal_times or spike_times: self.ax_histogram.legend(loc='upper right', fontsize=9) self.ax_histogram.grid(True, alpha=0.3) self.fig.tight_layout() self.canvas.draw()