
Sincronizzazione TimeTag.md 2025-11-04

1 / 8

Analisi e Risoluzione del Disallineamento Temporale tra Simulatore e
Server

1. Sommario Esecutivo

Questo documento descrive il processo di analisi e risoluzione del disallineamento posizionale osservato tra i
dati generati dal simulatore locale (client) e i dati ricevuti dal sistema di simulazione remoto (server).

Il problema iniziale si manifestava come un errore di posizione ampio e molto rumoroso. L'analisi ha
identificato due cause principali:

1. Jitter di Rete: Variazioni nella latenza di rete venivano erroneamente interpretate come errori di
posizione, introducendo un rumore significativo nella misurazione.

2. Latenza di Sistema Sistematica: Un ritardo costante, composto dalla latenza di rete e dal tempo di
elaborazione del server, causava un disallineamento (bias) costante tra la simulazione del client e quella
del server, con il client che risultava costantemente in anticipo.

Sono state implementate due soluzioni in sequenza:

1. Sincronizzazione degli Orologi: È stato introdotto un meccanismo basato su regressione lineare
(ClockSynchronizer) per modellare la relazione tra il timetag del server e l'orologio monotonico del
client. Questo ha permesso di filtrare il jitter di rete, ottenendo una misurazione dell'errore pulita e
stabile.

2. Compensazione della Latenza (Client-Side Prediction): È stata implementata una logica predittiva
nel motore di simulazione del client. Il client ora invia al server non la sua posizione attuale, ma una
stima della sua posizione futura, calcolata sulla base di un "orizzonte di predizione". Questo orizzonte è
la somma della latenza di rete stimata automaticamente e di un offset configurabile dall'utente per
compensare il ritardo di elaborazione del server.

Il risultato finale è una riduzione dell'errore sistematico di oltre il 90%, portando il disallineamento medio a
valori prossimi allo zero e fornendo una base di analisi della performance del sistema estremamente più
accurata e affidabile.

2. Il Problema Iniziale: Disallineamento e Rumore

L'obiettivo dell'analisi è misurare l'errore tra la posizione di un target simulato localmente e la posizione dello
stesso target simulato dal server. Inizialmente, il confronto mostrava un errore significativo e, soprattutto,
molto instabile.

Risultato Iniziale:



Sincronizzazione TimeTag.md 2025-11-04

2 / 8

Osservazioni: Il grafico dell'errore sull'asse X mostrava oscillazioni ad alta frequenza molto ampie. La
deviazione standard dell'errore era elevata (es. Std Dev: 101.6 piedi), indicando una forte
dispersione dei dati. Questo "rumore" mascherava la vera natura dell'errore sistematico.

3. Analisi della Causa Radice

3.1. Il Ruolo dei Timestamp e la Latenza di Rete

Il problema fondamentale risiedeva nel metodo di sincronizzazione dei dati. L'analisi dell'errore si basava
sull'allineamento dei campioni "simulati" e "reali" usando un unico dominio temporale: l'orologio del client.

Timestamp Simulato (Client): Generato con time.monotonic() al momento del calcolo della
posizione.
Timestamp Reale (Server): Assegnato usando time.monotonic() al momento della ricezione del
pacchetto dati dal server.

Questo approccio è intrinsecamente fallace perché ignora due fenomeni critici delle reti:

Latenza: Il tempo che un pacchetto impiega per viaggiare dal server al client. Non è mai zero.
Jitter: La variazione imprevedibile della latenza. Pacchetti consecutivi possono avere ritardi diversi.



Sincronizzazione TimeTag.md 2025-11-04

3 / 8

Confrontare la posizione simulata con quella reale usando il tempo di ricezione equivale a trattare il jitter di
rete come un errore di posizione. Una piccola variazione temporale, per un target in rapido movimento, si
traduce in una grande variazione spaziale, generando il "rumore" osservato nel grafico.

4. Prima Soluzione: Sincronizzazione degli Orologi tramite Regressione Lineare

Per ottenere una misurazione pulita, era necessario stimare il momento in cui il dato era stato generato dal
server, non ricevuto dal client. La chiave per questa operazione è il timetag fornito dal server in ogni
pacchetto dati.

4.1. Teoria: Modellare la Relazione tra Orologi

Il timetag del server è un contatore a 32 bit con una frequenza nota (tick ogni 64µs). Sebbene il suo valore
assoluto non sia direttamente confrontabile con l'orologio del client, la relazione tra i due è
approssimativamente lineare nel tempo.

Abbiamo ipotizzato che la relazione potesse essere descritta da una retta: Tempo_Client_Ricezione = m *
Timetag_Server_Srotolato + b

m (pendenza): Rappresenta il rapporto tra le frequenze dei due orologi (il "clock drift").
b (intercetta): Rappresenta l'offset temporale totale, che include sia la differenza di fase iniziale tra gli
orologi sia la latenza media di rete.

Per gestire il reset del contatore a 32 bit del server (wrap-around), è stata implementata una logica di
"Timestamp Unwrapping": il client rileva il reset e mantiene un contatore a 64 bit "srotolato" che cresce in
modo continuo, garantendo la monotonicità necessaria per la regressione.

4.2. Implementazione

È stata creata la classe utils.ClockSynchronizer. Ad ogni pacchetto ricevuto, essa riceve la coppia
(timetag_server, tempo_ricezione_client).
La classe esegue la logica di unwrapping e memorizza una cronologia degli ultimi N campioni.
Utilizzando numpy.polyfit (regressione lineare), la classe ricalcola costantemente i parametri m e b
della retta che meglio approssima i dati.
Il gui.DebugPayloadRouter è stato modificato per utilizzare il ClockSynchronizer. Ad ogni
pacchetto, calcola un estimated_generation_time usando il modello e passa questo timestamp
corretto al SimulationStateHub.

4.3. Risultati Intermedi

Questa modifica ha eliminato il rumore dovuto al jitter, rivelando la vera natura dell'errore.

Confronto Prima/Dopo Sincronizzazione:



Sincronizzazione TimeTag.md 2025-11-04

4 / 8

(Questo grafico mostra il risultato dopo l'applicazione del ClockSynchronizer)

Osservazioni: Il grafico è diventato stabile e leggibile. La deviazione standard si è ridotta
significativamente.
Nuova Evidenza: È emerso un errore sistematico (bias) molto chiaro. L'errore medio era
costantemente positivo e grande (es. Mean Error: +415 piedi), indicando un disallineamento
costante.

5. Seconda Soluzione: Compensazione della Latenza di Sistema

L'analisi di test simmetrici (target in direzioni opposte) ha rivelato che il segno dell'errore si invertiva in modo
speculare. Questo ha confermato in modo inequivocabile che il simulatore client era costantemente in
anticipo rispetto alla simulazione del server.

La causa di questo anticipo è il ritardo totale di sistema: il tempo che intercorre tra l'invio di un comando da
parte del client e la sua effettiva applicazione da parte del server. Questo ritardo è la somma di:

1. Latenza di Rete (Client -> Server)
2. Ritardo di Elaborazione del Server (tempo di attesa in coda, scheduling, frequenza di tick del motore

di simulazione).

5.1. Teoria: "Client-Side Prediction"



Sincronizzazione TimeTag.md 2025-11-04

5 / 8

Per eliminare questo bias, il client deve compensare proattivamente il ritardo del sistema. Invece di inviare la
sua posizione attuale, deve inviare una stima della sua posizione futura, proiettata in avanti nel tempo di un
intervallo pari al ritardo totale stimato.

Posizione_da_Inviare = Posizione_Predetta(tempo_attuale + orizzonte_di_predizione)

5.2. Implementazione

L'orizzonte_di_predizione è stato definito come la somma di due componenti:
1. Latenza di Rete Stimata: Calcolata automaticamente dal ClockSynchronizer.
2. Prediction Offset (ms): Un valore configurabile dall'utente, introdotto per permettere una

"taratura fine" che compensi il ritardo di elaborazione del server.
Nella ConnectionSettingsWindow è stato aggiunto un campo per impostare questo offset.
Il SimulationEngine è stato modificato: prima di inviare i dati, crea una copia temporanea di ogni
target, la fa avanzare nel tempo per un intervallo pari all'orizzonte di predizione totale, e invia al server
lo stato futuro.

5.3. Risultati Finali

Applicando un offset di predizione opportunamente tarato (es. 30 ms), l'errore sistematico è stato quasi
completamente eliminato.

Risultato Finale con Predizione:



Sincronizzazione TimeTag.md 2025-11-04

6 / 8

Osservazioni: Il Mean Error è sceso da +415 piedi a -39 piedi, una riduzione di oltre il 90%. La linea
dell'errore ora oscilla stabilmente attorno allo zero.
Conclusione: Il sistema è ora correttamente sincronizzato e compensato. L'errore residuo misurato
rappresenta il "rumore" intrinseco del sistema distribuito, non più un difetto sistematico della
misurazione.

6. Conclusione

Il processo iterativo di analisi e implementazione ha trasformato un'analisi dell'errore inaffidabile in uno
strumento di misurazione preciso. Le soluzioni adottate hanno affrontato con successo le cause radice del
disallineamento, fornendo una rappresentazione fedele della performance del sistema di tracciamento e uno
strumento efficace per la sua taratura.

Annex 1. Il Modello del Server: "Dead Reckoning"

Il comportamento che descrivi è noto come "dead reckoning" (navigazione stimata). Il server non è un
semplice "pappagallo" che si teletrasporta nella posizione che gli inviamo. È un simulatore attivo:

1. Tu gli invii uno stato iniziale (posizione, velocità, heading).
2. Lui inizia a far muovere il target in autonomia, usando quello stato come punto di partenza.



Sincronizzazione TimeTag.md 2025-11-04

7 / 8

3. Continua a farlo finché non riceve un nuovo comando di aggiornamento da parte tua, che usa per
"correggere" la sua traiettoria.

Perché Questo Rende la Nostra Soluzione Ancora Più Efficace

Pensiamo al flusso di eventi senza la nostra soluzione di predizione:

1. T=0.0s (Client): Il tuo simulatore è in posizione P_A. Invia il comando (P_A, Vel_A).
2. T=0.03s (Server): Il server riceve il comando (dopo 30ms di ritardo totale). Imposta il suo target su P_A

e inizia a muoverlo con Vel_A. Ma in questo istante, il tuo client è già andato avanti di 30ms e si
trova in una posizione P_B!

3. T=1.0s (Client): Il tuo simulatore è in posizione P_C. Invia il comando (P_C, Vel_C).
4. T=1.03s (Server): Nel frattempo, dal suo punto di vista, il server ha simulato per 1 secondo partendo

da P_A. Si troverà in una posizione P_server. Ora riceve il tuo nuovo comando (P_C). Lo applica e
"salta" alla posizione P_C.

5. Il Problema: Il server è costantemente in ritardo. Ad ogni istante T, il server sta eseguendo una
simulazione basata su un comando che tu hai inviato al tempo T - 30ms.

Questo cosa causa? Causa un errore di traiettoria accumulato. Tra un aggiornamento e l'altro, il server sta
simulando una traiettoria che è "sfasata" nel tempo rispetto alla tua. L'errore tra le due posizioni rimane quasi
costante (ecco perché vedi le linee quasi piatte tra un gradino e l'altro).

Cosa sono i "gradini" nel grafico? I gradini che vedi nel grafico dell'errore corrispondono esattamente ai
momenti in cui il tuo SimulationEngine invia un aggiornamento. Quando il server riceve il nuovo comando,
"salta" alla nuova posizione corretta (ma vecchia di 30ms), e questo causa un cambiamento improvviso
nell'errore misurato. L'errore poi si stabilizza di nuovo fino al prossimo aggiornamento.

Come la Nostra Implementazione Risolve Esattamente Questo Problema

La nostra soluzione di predizione lato client è la risposta perfetta a questo scenario.

1. T=0.0s (Client): Il tuo simulatore è in P_A. Sa che c'è un ritardo di 30ms. Invece di inviare P_A, calcola
dove sarà tra 30ms (chiamiamola P_A_future) e invia il comando (P_A_future, Vel_A).

2. T=0.03s (Server): Il server riceve il comando. In questo preciso istante, la posizione corretta della
simulazione dovrebbe essere P_A_future. Il server imposta il suo target esattamente su P_A_future e
inizia a simulare.

3. Sincronizzazione Raggiunta: Le due simulazioni, quella del client e quella del server, sono ora quasi
perfettamente allineate nel tempo.

In sintesi:

No, la tua considerazione non inficia nulla. Anzi, conferma che la nostra diagnosi era corretta.
L'errore sistematico non era solo un problema di "misurazione", ma un reale disallineamento tra due
simulazioni attive.
La nostra soluzione non sta solo "truccando" l'analisi, sta attivamente correggendo il
comportamento del sistema. Stiamo sincronizzando due motori di simulazione distribuiti, che è un
problema molto più complesso e importante.
Il fatto che il server esegua una sua simulazione interna è proprio il motivo per cui la predizione è così
efficace. Se il server si limitasse a "teletrasportarsi", vedremmo un errore costante ma forse non i



Sincronizzazione TimeTag.md 2025-11-04

8 / 8

gradini. I gradini sono la firma di un sistema che corregge periodicamente una traiettoria che sta
andando "alla deriva" a causa del ritardo.


