S1005403_RisCC/target_simulator/gui/ppi_display.py

434 lines
20 KiB
Python

# target_simulator/gui/ppi_display.py
"""
A reusable Tkinter widget that displays a Plan Position Indicator (PPI)
using Matplotlib, capable of showing both live targets and trajectory previews.
"""
import tkinter as tk
from tkinter import ttk
import math
import numpy as np
import copy
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
# Use absolute imports
from target_simulator.core.models import Target, Waypoint, ManeuverType
from typing import List, Optional
class PPIDisplay(ttk.Frame):
def clear_previews(self):
"""Clears all preview artists from the plot."""
for artist in self.preview_artists:
artist.set_data([], [])
self.canvas.draw()
def _on_motion(self, event):
# Stub: implementazione futura per tooltip/mouseover
pass
"""A custom, reusable widget for the PPI radar display."""
def __init__(self, master, max_range_nm: int = 100, scan_limit_deg: int = 60):
super().__init__(master)
self.max_range = max_range_nm
self.scan_limit_deg = scan_limit_deg
self.target_artists = []
self.active_targets: List[Target] = []
self._target_dots = []
self.preview_artists = []
self._create_controls()
self._create_plot()
def _create_controls(self):
"""Creates the control widgets for the PPI display."""
self.controls_frame = ttk.Frame(self)
self.controls_frame.pack(side=tk.TOP, fill=tk.X, padx=5, pady=5)
ttk.Label(self.controls_frame, text="Range (NM):").pack(side=tk.LEFT)
# Create a list of valid range steps up to the theoretical max_range
all_steps = [10, 20, 40, 80, 100, 160]
valid_steps = sorted([s for s in all_steps if s <= self.max_range])
if not valid_steps:
valid_steps = [self.max_range]
# Ensure the initial max range is in the list if not a standard step
if self.max_range not in valid_steps:
valid_steps.append(self.max_range)
valid_steps.sort()
# The initial value for the combobox is the max_range passed to the constructor
self.range_var = tk.IntVar(value=self.max_range)
self.range_selector = ttk.Combobox(
self.controls_frame, textvariable=self.range_var,
values=valid_steps, state="readonly", width=5
)
self.range_selector.pack(side=tk.LEFT, padx=5)
self.range_selector.bind("<<ComboboxSelected>>", self._on_range_selected)
def _create_plot(self):
"""Initializes the Matplotlib polar plot."""
fig = Figure(figsize=(5, 5), dpi=100, facecolor='#3E3E3E')
fig.subplots_adjust(left=0.05, right=0.95, top=0.85, bottom=0.05)
self.ax = fig.add_subplot(111, projection='polar', facecolor='#2E2E2E')
self.ax.set_theta_zero_location('N')
self.ax.set_theta_direction(-1)
self.ax.set_rlabel_position(90)
self.ax.set_ylim(0, self.range_var.get())
angles = np.arange(0, 360, 30)
labels = [f"{angle}°" if angle == 0 else f"+{angle}°" if angle < 180 else "±180°" if angle == 180 else f"-{360 - angle}°" for angle in angles]
self.ax.set_thetagrids(angles, labels)
self.ax.tick_params(axis='x', colors='white', labelsize=8)
self.ax.tick_params(axis='y', colors='white', labelsize=8)
self.ax.grid(color='white', linestyle='--', linewidth=0.5, alpha=0.5)
self.ax.spines['polar'].set_color('white')
self.ax.set_title("PPI Display", color='white', y=1.08)
# --- Artists for drawing ---
self._start_plot, = self.ax.plot([], [], 'go', markersize=8)
self._waypoints_plot, = self.ax.plot([], [], 'y+', markersize=10, mew=2, linestyle='None')
self._path_plot, = self.ax.plot([], [], 'g--', linewidth=1.5)
self._preview_artist, = self.ax.plot([], [], color="orange", linestyle="--", linewidth=2, alpha=0.7)
self._heading_artist, = self.ax.plot([], [], color='red', linewidth=1, alpha=0.8)
self.preview_artists = [self._start_plot, self._waypoints_plot, self._path_plot, self._preview_artist, self._heading_artist]
# --- NEW: Create artists for scan lines ---
limit_rad = np.deg2rad(self.scan_limit_deg)
self._scan_line_1, = self.ax.plot([limit_rad, limit_rad], [0, self.max_range], color='yellow', linestyle='--', linewidth=1)
self._scan_line_2, = self.ax.plot([-limit_rad, -limit_rad], [0, self.max_range], color='yellow', linestyle='--', linewidth=1)
self._tooltip_label = None
self.canvas = FigureCanvasTkAgg(fig, master=self)
self.canvas.draw()
self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
self.canvas.mpl_connect('motion_notify_event', self._on_motion)
# --- NEW: Initial draw of scan lines ---
self._update_scan_lines()
def _update_scan_lines(self):
"""Updates the length of the scan sector lines to match the current range."""
current_range_max = self.ax.get_ylim()[1]
self._scan_line_1.set_ydata([0, current_range_max])
self._scan_line_2.set_ydata([0, current_range_max])
def _on_range_selected(self, event=None):
"""Handles the selection of a new range."""
new_range = self.range_var.get()
self.ax.set_ylim(0, new_range)
# --- NEW: Update scan lines on zoom change ---
self._update_scan_lines()
self.update_targets(self.active_targets)
self.canvas.draw()
# ... il resto dei metodi rimane invariato ...
def update_targets(self, targets: List[Target]):
# (This method is unchanged)
self.active_targets = [t for t in targets if t.active]
for artist in self.target_artists: artist.remove()
self.target_artists.clear()
self._target_dots.clear()
vector_len = self.range_var.get() / 25
for target in self.active_targets:
r = target.current_range_nm
theta = np.deg2rad(target.current_azimuth_deg)
dot, = self.ax.plot(theta, r, 'o', markersize=5, color='red')
self.target_artists.append(dot)
self._target_dots.append((dot, target))
x1, y1 = r * np.sin(theta), r * np.cos(theta)
h_rad = np.deg2rad(target.current_heading_deg)
dx, dy = vector_len * np.sin(h_rad), vector_len * np.cos(h_rad)
x2, y2 = x1 + dx, y1 + dy
r2, th2 = np.sqrt(x2**2 + y2**2), np.arctan2(x2, y2)
line, = self.ax.plot([theta, th2], [r, r2], color='red', linewidth=1.2)
self.target_artists.append(line)
self.canvas.draw()
def draw_trajectory_preview(self, trajectory):
"""
Simulates and draws a trajectory preview.
Accepts either a list of Waypoint or a Target object.
"""
self.clear_previews()
self._waypoints_plot.set_data([], [])
self._start_plot.set_data([], [])
if hasattr(self, '_preview_artist'):
self._preview_artist.set_data([], [])
# --- Simula la traiettoria anche per manovre dinamiche ---
waypoints = trajectory if isinstance(trajectory, list) else getattr(trajectory, 'trajectory', [])
preview_points = []
# Stato iniziale
pos_x, pos_y, pos_z = 0.0, 0.0, 0.0
heading_deg = 0.0
velocity_fps = 0.0
altitude_ft = 0.0
# Usa il primo waypoint come stato iniziale se disponibile
if waypoints:
wp0 = waypoints[0]
if getattr(wp0, 'target_range_nm', None) is not None and getattr(wp0, 'target_azimuth_deg', None) is not None:
r0 = wp0.target_range_nm
th0 = math.radians(wp0.target_azimuth_deg)
pos_x = r0 * 6076.12 * math.sin(th0)
pos_y = r0 * 6076.12 * math.cos(th0)
pos_z = wp0.target_altitude_ft or 0.0
heading_deg = wp0.target_heading_deg or 0.0
velocity_fps = wp0.target_velocity_fps or 0.0
altitude_ft = pos_z
preview_points.append((pos_x, pos_y))
# Simula ogni waypoint
for wp in waypoints:
if wp.maneuver_type == ManeuverType.FLY_TO_POINT:
if wp.target_range_nm is not None and wp.target_azimuth_deg is not None:
r = wp.target_range_nm
th = math.radians(wp.target_azimuth_deg)
pos_x = r * 6076.12 * math.sin(th)
pos_y = r * 6076.12 * math.cos(th)
pos_z = wp.target_altitude_ft or pos_z
heading_deg = wp.target_heading_deg or heading_deg
velocity_fps = wp.target_velocity_fps or velocity_fps
preview_points.append((pos_x, pos_y))
elif wp.maneuver_type == ManeuverType.FLY_FOR_DURATION:
# Interpolazione lineare
dt = wp.duration_s or 1.0
steps = max(10, int(dt))
for i in range(steps):
frac = (i + 1) / steps
heading_rad = math.radians(heading_deg)
dist = (wp.target_velocity_fps or velocity_fps) * (dt / steps)
pos_x += dist * math.sin(heading_rad)
pos_y += dist * math.cos(heading_rad)
preview_points.append((pos_x, pos_y))
heading_deg = wp.target_heading_deg or heading_deg
velocity_fps = wp.target_velocity_fps or velocity_fps
elif wp.maneuver_type == ManeuverType.DYNAMIC_MANEUVER:
# Simula la curva: integra accelerazione laterale
dt = wp.duration_s or 1.0
steps = max(20, int(dt * 2))
velocity = wp.dynamic_velocity_fps or velocity_fps
heading = heading_deg
lateral_g = wp.lateral_g or 0.0
long_g = wp.longitudinal_g or 0.0
vert_g = wp.vertical_g or 0.0
G_FT_S2 = 32.174
lateral_acc = lateral_g * G_FT_S2
long_acc = long_g * G_FT_S2
vert_acc = vert_g * G_FT_S2
for i in range(steps):
dts = dt / steps
# Aggiorna heading (virata)
turn_rate_rad_s = lateral_acc / max(velocity, 1e-3)
heading += math.degrees(turn_rate_rad_s * dts)
heading_rad = math.radians(heading)
# Aggiorna velocità
velocity += long_acc * dts
# Aggiorna posizione
pos_x += velocity * math.sin(heading_rad) * dts
pos_y += velocity * math.cos(heading_rad) * dts
pos_z += vert_acc * dts
preview_points.append((pos_x, pos_y))
heading_deg = heading
velocity_fps = velocity
# Converti i punti in polari per la PPI
thetas = []
rs = []
for x, y in preview_points:
r = math.sqrt(x**2 + y**2) / 6076.12
th = math.atan2(x, y)
rs.append(r)
thetas.append(th)
# Mostra il punto iniziale anche se c'è solo un waypoint
if len(thetas) == 1:
self._preview_artist.set_data([], [])
self._waypoints_plot.set_data(thetas, rs)
self._start_plot.set_data([thetas[0]], [rs[0]])
heading_len = 3
# Usa heading del waypoint se disponibile
wp_heading = None
if waypoints and hasattr(waypoints[0], 'target_heading_deg') and waypoints[0].target_heading_deg is not None:
wp_heading = waypoints[0].target_heading_deg
if wp_heading is not None:
# L'heading è rispetto al nord (0°), quindi la freccia va da (r, azimuth) verso (r+len, azimuth+heading)
start_theta = thetas[0]
start_r = rs[0]
heading_theta = start_theta + math.radians(wp_heading)
heading_r2 = start_r + heading_len
if hasattr(self, '_heading_artist'):
self._heading_artist.remove()
self._heading_artist, = self.ax.plot([start_theta, heading_theta], [start_r, heading_r2], color='red', linewidth=1, alpha=0.8)
else:
heading_theta = thetas[0]
heading_r2 = rs[0] + heading_len
if hasattr(self, '_heading_artist'):
self._heading_artist.remove()
self._heading_artist, = self.ax.plot([thetas[0], heading_theta], [rs[0], heading_r2], color='red', linewidth=1, alpha=0.8)
self.canvas.draw()
self._on_range_selected()
return
elif len(thetas) >= 2:
self._preview_artist.set_data(thetas, rs)
self._waypoints_plot.set_data(thetas, rs)
self._start_plot.set_data([thetas[0]], [rs[0]])
heading_len = 3
heading_theta = thetas[0]
heading_r2 = rs[0] + heading_len
if hasattr(self, '_heading_artist'):
self._heading_artist.remove()
self._heading_artist, = self.ax.plot([heading_theta, heading_theta], [rs[0], heading_r2], color='red', linewidth=1, alpha=0.8)
self.canvas.draw()
self._on_range_selected()
return
# Determine input type
if isinstance(trajectory, list):
self._spline_preview_active = False
waypoints = trajectory
if not waypoints:
self.canvas.draw()
return
if all(getattr(wp, 'maneuver_type', None) != ManeuverType.FLY_TO_POINT for wp in waypoints):
self.canvas.draw()
return
# Classic preview (polyline) SOLO se spline non attiva
# (la preview spline cancella la classica)
# Solo waypoint con azimuth e range (escludi manovre dinamiche)
thetas = []
rs = []
for wp in waypoints:
az = getattr(wp, 'target_azimuth_deg', None)
rng = getattr(wp, 'target_range_nm', None)
if az is not None and rng is not None:
thetas.append(math.radians(az))
rs.append(rng)
if len(thetas) < 2:
self.canvas.draw()
return
# Verifica se la preview è per spline: se sì, non disegnare la linea classica
if hasattr(self, '_spline_preview_active') and self._spline_preview_active:
self._preview_artist.set_data([], [])
else:
self._preview_artist.set_data(thetas, rs)
self._waypoints_plot.set_data(thetas, rs)
start_theta = thetas[0]
start_r = rs[0]
self._start_plot.set_data([start_theta], [start_r])
heading_len = 3
heading_theta = start_theta
heading_r2 = start_r + heading_len
# Cancella eventuali frecce precedenti
if hasattr(self, '_heading_artist'):
self._heading_artist.remove()
self._heading_artist, = self.ax.plot([start_theta, heading_theta], [start_r, heading_r2], color='red', linewidth=1, alpha=0.8)
else:
# Assume Target object with trajectory and use_spline
waypoints = getattr(trajectory, "trajectory", [])
if len(waypoints) < 2:
self.canvas.draw()
return
if getattr(trajectory, "use_spline", False):
self._spline_preview_active = True
from target_simulator.utils.spline import catmull_rom_spline
# Converte i waypoint da polari a cartesiane (x, y) in NM
points = []
for wp in waypoints:
r_nm = getattr(wp, 'target_range_nm', 0)
theta_deg = getattr(wp, 'target_azimuth_deg', 0)
theta_rad = math.radians(theta_deg)
x_nm = r_nm * math.sin(theta_rad)
y_nm = r_nm * math.cos(theta_rad)
points.append((x_nm, y_nm))
if len(points) < 4:
spline_pts = points
else:
try:
spline_pts = catmull_rom_spline(points)
# DEBUG: salva i punti spline in un file CSV
import csv, os
temp_path = os.path.join(os.path.dirname(__file__), '..', '..', 'Temp', 'spline_preview.csv')
with open(temp_path, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(['x_nm', 'y_nm'])
for pt in spline_pts:
writer.writerow([pt[0], pt[1]])
except Exception:
spline_pts = points
# Converte i punti spline da x/y a (theta, r) in NM
spline_thetas = []
spline_rs = []
for x_nm, y_nm in spline_pts:
r_nm = (x_nm**2 + y_nm**2)**0.5
theta = math.atan2(x_nm, y_nm)
spline_thetas.append(theta)
spline_rs.append(r_nm)
self._preview_artist.set_data(spline_thetas, spline_rs)
wp_thetas = []
wp_rs = []
for x_nm, y_nm in points:
r_nm = (x_nm**2 + y_nm**2)**0.5
theta = math.atan2(x_nm, y_nm)
wp_thetas.append(theta)
wp_rs.append(r_nm)
self._waypoints_plot.set_data(wp_thetas, wp_rs)
start_x_nm, start_y_nm = points[0]
start_r_nm = (start_x_nm**2 + start_y_nm**2)**0.5
start_theta = math.atan2(start_x_nm, start_y_nm)
self._start_plot.set_data([start_theta], [start_r_nm])
if hasattr(self, '_heading_artist'):
self._heading_artist.remove()
if len(points) > 1:
dx = points[1][0] - points[0][0]
dy = points[1][1] - points[0][1]
norm = (dx**2 + dy**2)**0.5
if norm > 0:
heading_len = 3
hx_nm = start_x_nm + heading_len * dx / norm
hy_nm = start_y_nm + heading_len * dy / norm
h_r_nm = (hx_nm**2 + hy_nm**2)**0.5
h_theta = math.atan2(hx_nm, hy_nm)
self._heading_artist, = self.ax.plot([start_theta, h_theta], [start_r_nm, h_r_nm], color='red', linewidth=1, alpha=0.8)
else:
self._spline_preview_active = False
xs = [wp.x for wp in waypoints]
ys = [wp.y for wp in waypoints]
self._preview_artist, = self.ax.plot(xs, ys, color="orange", linestyle="--", linewidth=2, alpha=0.7)
# ...rimosso blocco duplicato/non valido...
self._update_scan_lines()
self.canvas.draw()
def reconfigure_radar(self, max_range_nm: int, scan_limit_deg: int):
"""
Updates the radar parameters (range, scan limit) of an existing PPI display.
"""
self.max_range = max_range_nm
self.scan_limit_deg = scan_limit_deg
# Update the range combobox values
steps = [10, 20, 40, 80, 100, 160]
valid_steps = sorted([s for s in steps if s <= self.max_range])
if not valid_steps: valid_steps = [self.max_range]
if self.max_range not in valid_steps:
valid_steps.append(self.max_range)
valid_steps.sort()
self.range_selector['values'] = valid_steps
self.range_var.set(self.max_range) # Set to the new max range
# Update the scan limit lines
limit_rad = np.deg2rad(self.scan_limit_deg)
self._scan_line_1.set_xdata([limit_rad, limit_rad])
self._scan_line_2.set_xdata([-limit_rad, -limit_rad])
# Apply the new range and redraw everything
self._on_range_selected()