S1005403_RisCC/target_simulator/gui/performance_analysis_window.py

472 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# target_simulator/gui/performance_analysis_window.py
"""
Performance Analysis Window for detailed packet processing diagnostics.
This window provides in-depth visualization of packet processing performance
including timing breakdowns, spike detection, and statistical analysis.
"""
import tkinter as tk
from tkinter import ttk, messagebox
import logging
from typing import Optional, Dict, Any, List
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
import statistics
logger = logging.getLogger(__name__)
class PerformanceAnalysisWindow(tk.Toplevel):
"""
Dedicated window for analyzing packet processing performance data.
Displays:
- Time-series plot of component processing times
- Statistical summary table
- Distribution histogram
"""
def __init__(self, parent, performance_samples: List[Dict[str, Any]], scenario_name: str = "Unknown"):
"""
Initialize the performance analysis window.
Args:
parent: Parent Tkinter window
performance_samples: List of performance sample dictionaries
scenario_name: Name of the scenario for display
"""
super().__init__(parent)
self.title(f"Performance Analysis - {scenario_name}")
self.geometry("1200x900")
self.performance_samples = performance_samples
self.scenario_name = scenario_name
# Extract data arrays
self._extract_data()
# Show loading dialog while creating widgets
self._show_loading_and_create_widgets()
def _extract_data(self):
"""Extract data arrays from performance samples."""
if not self.performance_samples:
self.timestamps = []
self.total_ms = []
self.parse_ms = []
self.hub_ms = []
self.archive_ms = []
self.listener_ms = []
self.clock_ms = []
return
self.timestamps = [s['timestamp'] for s in self.performance_samples]
self.total_ms = [s['total_ms'] for s in self.performance_samples]
self.parse_ms = [s['parse_ms'] for s in self.performance_samples]
self.hub_ms = [s['hub_ms'] for s in self.performance_samples]
self.archive_ms = [s['archive_ms'] for s in self.performance_samples]
self.listener_ms = [s['listener_ms'] for s in self.performance_samples]
self.clock_ms = [s['clock_ms'] for s in self.performance_samples]
def _show_loading_and_create_widgets(self):
"""Show loading dialog and create widgets asynchronously."""
# Create loading dialog
loading_dialog = tk.Toplevel(self)
loading_dialog.title("Loading Performance Data")
loading_dialog.geometry("350x120")
loading_dialog.transient(self)
loading_dialog.grab_set()
# Center the dialog
loading_dialog.update_idletasks()
x = self.winfo_x() + (self.winfo_width() // 2) - (loading_dialog.winfo_width() // 2)
y = self.winfo_y() + (self.winfo_height() // 2) - (loading_dialog.winfo_height() // 2)
loading_dialog.geometry(f"+{x}+{y}")
ttk.Label(
loading_dialog,
text=f"Processing {len(self.performance_samples)} samples...",
font=("Segoe UI", 10)
).pack(pady=20)
progress_label = ttk.Label(loading_dialog, text="Calculating statistics...")
progress_label.pack(pady=5)
progress_bar = ttk.Progressbar(loading_dialog, mode='indeterminate', length=300)
progress_bar.pack(pady=10)
progress_bar.start(10)
def load_and_display():
try:
progress_label.config(text="Computing statistics...")
self.update()
# Compute statistics
self._compute_statistics()
progress_label.config(text="Creating widgets...")
self.update()
# Create UI
self._create_widgets()
progress_label.config(text="Rendering plots...")
self.update()
# Populate data
self._populate_plots()
# Close loading dialog
loading_dialog.destroy()
except Exception as e:
loading_dialog.destroy()
messagebox.showerror(
"Performance Analysis Error",
f"Failed to load performance data:\n{e}",
parent=self
)
self.destroy()
# Schedule loading after dialog is visible
self.after(100, load_and_display)
def _compute_statistics(self):
"""Compute statistical metrics from performance data."""
if not self.total_ms:
self.stats = {}
return
# Overall statistics
self.stats = {
'total_samples': len(self.total_ms),
'total': {
'mean': statistics.mean(self.total_ms),
'median': statistics.median(self.total_ms),
'stdev': statistics.stdev(self.total_ms) if len(self.total_ms) > 1 else 0.0,
'min': min(self.total_ms),
'max': max(self.total_ms),
'p95': self._percentile(self.total_ms, 95),
'p99': self._percentile(self.total_ms, 99),
},
'parse': {
'mean': statistics.mean(self.parse_ms),
'max': max(self.parse_ms),
},
'hub': {
'mean': statistics.mean(self.hub_ms),
'max': max(self.hub_ms),
},
'archive': {
'mean': statistics.mean(self.archive_ms),
'max': max(self.archive_ms),
},
'listener': {
'mean': statistics.mean(self.listener_ms),
'max': max(self.listener_ms),
},
'clock': {
'mean': statistics.mean(self.clock_ms),
'max': max(self.clock_ms),
},
}
# Count spikes (> 100ms)
self.stats['spike_count'] = sum(1 for t in self.total_ms if t > 100)
self.stats['spike_percentage'] = (self.stats['spike_count'] / len(self.total_ms)) * 100
# Find dominant component for max spike
max_idx = self.total_ms.index(self.stats['total']['max'])
components = {
'parse': self.parse_ms[max_idx],
'hub': self.hub_ms[max_idx],
'archive': self.archive_ms[max_idx],
'listener': self.listener_ms[max_idx],
'clock': self.clock_ms[max_idx],
}
self.stats['max_component'] = max(components, key=components.get)
self.stats['max_component_value'] = components[self.stats['max_component']]
def _percentile(self, data: List[float], p: float) -> float:
"""Calculate percentile of data."""
sorted_data = sorted(data)
k = (len(sorted_data) - 1) * (p / 100)
f = int(k)
c = f + 1
if c >= len(sorted_data):
return sorted_data[-1]
d0 = sorted_data[f]
d1 = sorted_data[c]
return d0 + (d1 - d0) * (k - f)
def _create_widgets(self):
"""Create the UI widgets."""
# Main container with paned window
main_pane = ttk.PanedWindow(self, orient=tk.VERTICAL)
main_pane.pack(fill=tk.BOTH, expand=True, padx=10, pady=10)
# Top section: Statistics table (left) + Info panel (right)
top_container = ttk.Frame(main_pane)
main_pane.add(top_container, weight=1)
# Left side: Statistics table
stats_frame = ttk.LabelFrame(top_container, text="Performance Statistics", padding=10)
stats_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=(0, 5))
self._create_stats_table(stats_frame)
# Right side: Info/Legend panel
self._create_info_panel(top_container)
# Bottom section: Plots
plots_frame = ttk.Frame(main_pane)
main_pane.add(plots_frame, weight=4)
self._create_plots(plots_frame)
def _create_info_panel(self, parent):
"""Create an informational panel explaining the metrics."""
info_frame = ttk.LabelFrame(parent, text=" About Performance Analysis", padding=10)
info_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=False)
info_text = (
"This window analyzes radar packet\n"
"processing times during simulation.\n\n"
"📊 Measured Components:\n"
"• Parse: Decode raw SFP payload\n"
" (ctypes binary deserialization)\n"
"• Hub: Update SimulationStateHub\n"
" (thread-safe data buffer)\n"
"• Archive: Persist data to JSON file\n"
"• Listener: Broadcast events to GUI\n"
"• Clock: Synchronize timestamps\n\n"
"⚠ Spikes (>100ms):\n"
"Critical slowdowns - likely Garbage\n"
"Collection, disk I/O, or lock contention.\n\n"
"🎯 Bottleneck:\n"
"Component responsible for the\n"
"maximum recorded delay."
)
info_label = ttk.Label(info_frame, text=info_text, justify=tk.LEFT,
font=("Segoe UI", 9), wraplength=320)
info_label.pack(anchor=tk.W)
def _create_stats_table(self, parent):
"""Create the statistics table."""
# Create treeview with scrollbar
tree_frame = ttk.Frame(parent)
tree_frame.pack(fill=tk.BOTH, expand=True)
scrollbar = ttk.Scrollbar(tree_frame)
scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
columns = ("Metric", "Value", "Details")
self.stats_tree = ttk.Treeview(
tree_frame,
columns=columns,
show="headings",
height=12,
yscrollcommand=scrollbar.set
)
scrollbar.config(command=self.stats_tree.yview)
# Configure columns
self.stats_tree.heading("Metric", text="Metric")
self.stats_tree.heading("Value", text="Value")
self.stats_tree.heading("Details", text="Details")
self.stats_tree.column("Metric", width=200)
self.stats_tree.column("Value", width=150)
self.stats_tree.column("Details", width=300)
self.stats_tree.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
# Populate statistics
self._populate_stats_table()
def _populate_stats_table(self):
"""Populate the statistics table with computed metrics."""
if not self.stats:
self.stats_tree.insert("", "end", values=("No Data", "N/A", ""))
return
# General info
self.stats_tree.insert("", "end", values=(
"Total Samples",
f"{self.stats['total_samples']:,}",
""
))
self.stats_tree.insert("", "end", values=(
"Spikes (>100ms)",
f"{self.stats['spike_count']:,}",
f"{self.stats['spike_percentage']:.2f}% of packets"
))
# Separator
self.stats_tree.insert("", "end", values=("", "", ""))
# Overall timing
self.stats_tree.insert("", "end", values=(
"Total Processing Time",
"",
""
), tags=("header",))
total = self.stats['total']
self.stats_tree.insert("", "end", values=(
" Mean",
f"{total['mean']:.3f} ms",
""
))
self.stats_tree.insert("", "end", values=(
" Median",
f"{total['median']:.3f} ms",
""
))
self.stats_tree.insert("", "end", values=(
" Std Dev",
f"{total['stdev']:.3f} ms",
""
))
self.stats_tree.insert("", "end", values=(
" Min / Max",
f"{total['min']:.3f} / {total['max']:.1f} ms",
""
))
self.stats_tree.insert("", "end", values=(
" 95th Percentile",
f"{total['p95']:.3f} ms",
""
))
self.stats_tree.insert("", "end", values=(
" 99th Percentile",
f"{total['p99']:.3f} ms",
""
))
# Separator
self.stats_tree.insert("", "end", values=("", "", ""))
# Component breakdown
self.stats_tree.insert("", "end", values=(
"Component Breakdown",
"",
""
), tags=("header",))
for comp_name in ['parse', 'hub', 'archive', 'listener', 'clock']:
comp = self.stats[comp_name]
bottleneck = " ⚠ BOTTLENECK" if comp_name == self.stats['max_component'] else ""
self.stats_tree.insert("", "end", values=(
f" {comp_name.capitalize()}",
f"{comp['mean']:.3f} ms",
f"Max: {comp['max']:.1f} ms{bottleneck}"
))
# Configure tag styling
self.stats_tree.tag_configure("header", font=("Segoe UI", 9, "bold"))
def _create_plots(self, parent):
"""Create matplotlib plots."""
# Create figure with two subplots
self.fig = Figure(figsize=(10, 8), dpi=100)
# Use GridSpec for layout
gs = self.fig.add_gridspec(2, 1, height_ratios=[2, 1], hspace=0.3, top=0.95)
# Time series plot
self.ax_timeseries = self.fig.add_subplot(gs[0, 0])
self.ax_timeseries.set_title("Packet Processing Time Over Simulation")
self.ax_timeseries.set_xlabel("Time (s)")
self.ax_timeseries.set_ylabel("Processing Time (ms)")
self.ax_timeseries.grid(True, alpha=0.3)
# Histogram plot
self.ax_histogram = self.fig.add_subplot(gs[1, 0])
self.ax_histogram.set_title("Processing Time Distribution")
self.ax_histogram.set_xlabel("Processing Time (ms)")
self.ax_histogram.set_ylabel("Frequency")
self.ax_histogram.grid(True, alpha=0.3)
# Create canvas and toolbar
canvas_frame = ttk.Frame(parent)
canvas_frame.pack(fill=tk.BOTH, expand=True)
# Toolbar at top
toolbar_frame = ttk.Frame(canvas_frame)
toolbar_frame.pack(side=tk.TOP, fill=tk.X)
self.canvas = FigureCanvasTkAgg(self.fig, master=canvas_frame)
toolbar = NavigationToolbar2Tk(self.canvas, toolbar_frame)
toolbar.update()
# Canvas below toolbar
self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
def _populate_plots(self):
"""Populate the plots with performance data."""
if not self.timestamps:
self.canvas.draw()
return
# Time series plot - stacked area chart
self.ax_timeseries.clear()
self.ax_timeseries.set_title("Packet Processing Time Over Simulation")
self.ax_timeseries.set_xlabel("Time (s)")
self.ax_timeseries.set_ylabel("Processing Time (ms)")
# Plot individual components as lines
self.ax_timeseries.plot(self.timestamps, self.hub_ms,
label='Hub', color='#2E86AB', linewidth=1.5, alpha=0.8)
self.ax_timeseries.plot(self.timestamps, self.archive_ms,
label='Archive', color='#06A77D', linewidth=1.5, alpha=0.8)
self.ax_timeseries.plot(self.timestamps, self.listener_ms,
label='Listener', color='#D62246', linewidth=1.5, alpha=0.8)
self.ax_timeseries.plot(self.timestamps, self.parse_ms,
label='Parse', color='#F77F00', linewidth=1, alpha=0.7)
self.ax_timeseries.plot(self.timestamps, self.clock_ms,
label='Clock', color='#8B5A99', linewidth=1, alpha=0.7)
# Add horizontal line for 100ms threshold
self.ax_timeseries.axhline(y=100, color='red', linestyle='--',
linewidth=1, alpha=0.5, label='100ms threshold')
self.ax_timeseries.legend(loc='upper right', fontsize=9)
self.ax_timeseries.grid(True, alpha=0.3)
# Use log scale if there are large spikes
if max(self.total_ms) > 100:
self.ax_timeseries.set_yscale('log')
self.ax_timeseries.set_ylabel("Processing Time (ms, log scale)")
# Histogram - distribution of total processing times
self.ax_histogram.clear()
self.ax_histogram.set_title("Processing Time Distribution")
self.ax_histogram.set_xlabel("Processing Time (ms)")
self.ax_histogram.set_ylabel("Frequency")
# Calculate appropriate bins
# Separate normal from spikes for better visualization
normal_times = [t for t in self.total_ms if t <= 100]
spike_times = [t for t in self.total_ms if t > 100]
if normal_times:
self.ax_histogram.hist(normal_times, bins=50, color='#2E86AB',
alpha=0.7, label=f'Normal ({len(normal_times)} samples)')
if spike_times:
# Create separate bins for spikes
spike_bins = 20
self.ax_histogram.hist(spike_times, bins=spike_bins, color='#D62246',
alpha=0.7, label=f'Spikes ({len(spike_times)} samples)')
self.ax_histogram.legend(loc='upper right', fontsize=9)
self.ax_histogram.grid(True, alpha=0.3)
# Draw canvas
self.fig.tight_layout()
self.canvas.draw()