S1005403_RisCC/target_simulator/core/models.py

301 lines
15 KiB
Python

# target_simulator/core/models.py
"""
Defines the core data models for the application, including 3D dynamic Targets
with programmable trajectories and Scenarios.
"""
from __future__ import annotations
import math
from enum import Enum
from dataclasses import dataclass, field, fields
from typing import Dict, List, Optional, Tuple
# --- Constants ---
MIN_TARGET_ID = 0
MAX_TARGET_ID = 15
KNOTS_TO_FPS = 1.68781
FPS_TO_KNOTS = 1 / KNOTS_TO_FPS
NM_TO_FT = 6076.12
G_IN_FPS2 = 32.174 # Standard gravity in ft/s^2
class ManeuverType(Enum):
FLY_TO_POINT = "Fly to Point"
FLY_FOR_DURATION = "Fly for Duration"
DYNAMIC_MANEUVER = "Dynamic Maneuver"
class TurnDirection(Enum):
LEFT = "Left"
RIGHT = "Right"
@dataclass
class Waypoint:
"""Represents a segment of a target's trajectory, defining a maneuver."""
maneuver_type: ManeuverType = ManeuverType.FLY_FOR_DURATION
# --- Common Parameters ---
duration_s: Optional[float] = 10.0
# --- Parameters for FLY_TO_POINT ---
target_range_nm: Optional[float] = None
target_azimuth_deg: Optional[float] = None
target_altitude_ft: Optional[float] = None
# --- Parameters for FLY_FOR_DURATION (constant state) & FLY_TO_POINT (final state) ---
target_velocity_fps: Optional[float] = None
target_heading_deg: Optional[float] = None
# --- Parameters for DYNAMIC_MANEUVER ---
longitudinal_acceleration_g: Optional[float] = 0.0
lateral_acceleration_g: Optional[float] = 0.0
vertical_acceleration_g: Optional[float] = 0.0
turn_direction: Optional[TurnDirection] = TurnDirection.RIGHT
def to_dict(self) -> Dict:
"""Serializes the waypoint to a dictionary."""
data = {"maneuver_type": self.maneuver_type.value}
for f in fields(self):
if not f.name.startswith('_') and f.name != "maneuver_type":
val = getattr(self, f.name)
if isinstance(val, Enum):
data[f.name] = val.value
elif val is not None:
data[f.name] = val
return data
@dataclass
class Target:
"""Represents a dynamic 3D target with a programmable trajectory."""
target_id: int
trajectory: List[Waypoint] = field(default_factory=list)
active: bool = True
traceable: bool = True
use_spline: bool = False
current_range_nm: float = field(init=False, default=0.0)
current_azimuth_deg: float = field(init=False, default=0.0)
current_altitude_ft: float = field(init=False, default=0.0)
current_velocity_fps: float = field(init=False, default=0.0)
current_heading_deg: float = field(init=False, default=0.0)
current_pitch_deg: float = field(init=False, default=0.0)
_pos_x_ft: float = field(init=False, repr=False, default=0.0)
_pos_y_ft: float = field(init=False, repr=False, default=0.0)
_pos_z_ft: float = field(init=False, repr=False, default=0.0)
_sim_time_s: float = field(init=False, default=0.0)
_total_duration_s: float = field(init=False, default=0.0)
_path: List[Tuple[float, float, float, float]] = field(init=False, repr=False, default_factory=list)
def __post_init__(self):
if not (MIN_TARGET_ID <= self.target_id <= MAX_TARGET_ID):
raise ValueError(f"Target ID must be between {MIN_TARGET_ID} and {MAX_TARGET_ID}.")
self.reset_simulation()
def reset_simulation(self):
self._sim_time_s = 0.0
self._generate_path()
if self._path:
initial_pos = self._path[0]
self._pos_x_ft, self._pos_y_ft, self._pos_z_ft = initial_pos[1], initial_pos[2], initial_pos[3]
if len(self._path) > 1:
next_pos = self._path[1]
dx, dy, dz = next_pos[1] - self._pos_x_ft, next_pos[2] - self._pos_y_ft, next_pos[3] - self._pos_z_ft
dt = next_pos[0] - initial_pos[0]
dist_3d, dist_2d = math.sqrt(dx**2 + dy**2 + dz**2), math.sqrt(dx**2 + dy**2)
self.current_heading_deg = math.degrees(math.atan2(dx, dy)) % 360 if dist_2d > 0.1 else 0.0
self.current_pitch_deg = math.degrees(math.atan2(dz, dist_2d)) if dist_2d > 0.1 else 0.0
self.current_velocity_fps = dist_3d / dt if dt > 0 else 0.0
else:
self.current_heading_deg, self.current_pitch_deg, self.current_velocity_fps = 0.0, 0.0, 0.0
else:
self._pos_x_ft, self._pos_y_ft, self._pos_z_ft = 0.0, 0.0, 0.0
self.current_velocity_fps, self.current_heading_deg, self.current_pitch_deg = 0.0, 0.0, 0.0
self._update_current_polar_coords()
self.active = bool(self.trajectory)
def _generate_path(self):
self._path, self._total_duration_s = Target.generate_path_from_waypoints(self.trajectory, self.use_spline)
@staticmethod
def generate_path_from_waypoints(waypoints: List[Waypoint], use_spline: bool) -> Tuple[List[Tuple[float, ...]], float]:
path, total_duration_s = [], 0.0
if not waypoints or waypoints[0].maneuver_type != ManeuverType.FLY_TO_POINT:
return path, total_duration_s
first_wp = waypoints[0]
keyframes = []
pos_ft = [
(first_wp.target_range_nm or 0.0) * NM_TO_FT * math.sin(math.radians(first_wp.target_azimuth_deg or 0.0)),
(first_wp.target_range_nm or 0.0) * NM_TO_FT * math.cos(math.radians(first_wp.target_azimuth_deg or 0.0)),
first_wp.target_altitude_ft or 0.0
]
heading_rad = math.radians(first_wp.target_heading_deg or 0.0)
pitch_rad = 0.0
speed_fps = first_wp.target_velocity_fps or 0.0
vel_ft_s = [
speed_fps * math.cos(pitch_rad) * math.sin(heading_rad),
speed_fps * math.cos(pitch_rad) * math.cos(heading_rad),
speed_fps * math.sin(pitch_rad)
]
keyframes.append((total_duration_s, pos_ft[0], pos_ft[1], pos_ft[2]))
for i, wp in enumerate(waypoints):
duration = wp.duration_s or 0.0
if i == 0: continue
if wp.maneuver_type == ManeuverType.FLY_TO_POINT:
start_pos = list(pos_ft)
start_time = total_duration_s
target_pos = [
(wp.target_range_nm or 0.0) * NM_TO_FT * math.sin(math.radians(wp.target_azimuth_deg or 0.0)),
(wp.target_range_nm or 0.0) * NM_TO_FT * math.cos(math.radians(wp.target_azimuth_deg or 0.0)),
wp.target_altitude_ft or pos_ft[2]
]
time_step, num_steps = 0.1, max(1, int(duration / 0.1))
for step in range(1, num_steps + 1):
progress = step / num_steps
current_time = start_time + progress * duration
pos_ft = [start_pos[j] + (target_pos[j] - start_pos[j]) * progress for j in range(3)]
keyframes.append((current_time, pos_ft[0], pos_ft[1], pos_ft[2]))
total_duration_s += duration
if wp.target_velocity_fps is not None and wp.target_heading_deg is not None:
heading_rad = math.radians(wp.target_heading_deg)
speed_fps = wp.target_velocity_fps
vel_ft_s = [speed_fps * math.sin(heading_rad), speed_fps * math.cos(heading_rad), 0]
elif wp.maneuver_type == ManeuverType.FLY_FOR_DURATION:
speed_fps = wp.target_velocity_fps if wp.target_velocity_fps is not None else speed_fps
heading_rad = math.radians(wp.target_heading_deg) if wp.target_heading_deg is not None else heading_rad
dist_moved = speed_fps * duration
pos_ft[0] += dist_moved * math.sin(heading_rad)
pos_ft[1] += dist_moved * math.cos(heading_rad)
if wp.target_altitude_ft is not None: pos_ft[2] = wp.target_altitude_ft
total_duration_s += duration
keyframes.append((total_duration_s, pos_ft[0], pos_ft[1], pos_ft[2]))
elif wp.maneuver_type == ManeuverType.DYNAMIC_MANEUVER:
time_step, num_steps = 0.1, int(duration / 0.1)
accel_lon_fps2 = (wp.longitudinal_acceleration_g or 0.0) * G_IN_FPS2
accel_lat_fps2 = (wp.lateral_acceleration_g or 0.0) * G_IN_FPS2
accel_ver_fps2 = (wp.vertical_acceleration_g or 0.0) * G_IN_FPS2
dir_multiplier = 1.0 if wp.turn_direction == TurnDirection.RIGHT else -1.0
for _ in range(num_steps):
pos_ft = [pos_ft[j] + vel_ft_s[j] * time_step for j in range(3)]
current_speed_fps = math.sqrt(sum(v**2 for v in vel_ft_s))
if current_speed_fps < 0.1:
heading_rad = math.atan2(vel_ft_s[0], vel_ft_s[1])
vel_ft_s[0] += accel_lon_fps2 * math.sin(heading_rad) * time_step
vel_ft_s[1] += accel_lon_fps2 * math.cos(heading_rad) * time_step
else:
vel_unit_vec = [v / current_speed_fps for v in vel_ft_s]
vel_ft_s = [vel_ft_s[j] + vel_unit_vec[j] * accel_lon_fps2 * time_step for j in range(3)]
turn_rate_rad_s = accel_lat_fps2 / current_speed_fps
angle_change = turn_rate_rad_s * time_step * dir_multiplier
vx, vy = vel_ft_s[0], vel_ft_s[1]
vel_ft_s[0] = vx * math.cos(angle_change) - vy * math.sin(angle_change)
vel_ft_s[1] = vx * math.sin(angle_change) + vy * math.cos(angle_change)
vel_ft_s[2] += accel_ver_fps2 * time_step
total_duration_s += time_step
keyframes.append((total_duration_s, pos_ft[0], pos_ft[1], pos_ft[2]))
if use_spline and len(keyframes) >= 4:
from target_simulator.utils.spline import catmull_rom_spline
points_to_spline = [p[1:] for p in keyframes]
final_path = []
splined_points = catmull_rom_spline(points_to_spline, num_points=max(len(keyframes), 100))
for i, point in enumerate(splined_points):
time = (i / (len(splined_points) - 1)) * total_duration_s if len(splined_points) > 1 else 0.0
final_path.append((time, point[0], point[1], point[2]))
return final_path, total_duration_s
return keyframes, total_duration_s
def update_state(self, delta_time_s: float):
if not self.active or not self._path: return
self._sim_time_s += delta_time_s
current_sim_time = min(self._sim_time_s, self._total_duration_s)
if current_sim_time >= self._total_duration_s:
final_pos = self._path[-1]
self._pos_x_ft, self._pos_y_ft, self._pos_z_ft = final_pos[1], final_pos[2], final_pos[3]
self.current_velocity_fps = 0.0
if self._sim_time_s >= self._total_duration_s: self.active = False
else:
p1, p2 = self._path[0], self._path[-1]
for i in range(len(self._path) - 1):
if self._path[i][0] <= current_sim_time <= self._path[i+1][0]:
p1, p2 = self._path[i], self._path[i+1]
break
segment_duration = p2[0] - p1[0]
progress = (current_sim_time - p1[0]) / segment_duration if segment_duration > 0 else 1.0
prev_x, prev_y, prev_z = self._pos_x_ft, self._pos_y_ft, self._pos_z_ft
self._pos_x_ft = p1[1] + (p2[1] - p1[1]) * progress
self._pos_y_ft = p1[2] + (p2[2] - p1[2]) * progress
self._pos_z_ft = p1[3] + (p2[3] - p1[3]) * progress
dx, dy, dz = self._pos_x_ft - prev_x, self._pos_y_ft - prev_y, self._pos_z_ft - prev_z
dist_3d, dist_2d = math.sqrt(dx**2 + dy**2 + dz**2), math.sqrt(dx**2 + dy**2)
if delta_time_s > 0: self.current_velocity_fps = dist_3d / delta_time_s
if dist_2d > 0.1:
self.current_heading_deg = math.degrees(math.atan2(dx, dy)) % 360
self.current_pitch_deg = math.degrees(math.atan2(dz, dist_2d))
self._update_current_polar_coords()
def _update_current_polar_coords(self):
self.current_range_nm = math.sqrt(self._pos_x_ft**2 + self._pos_y_ft**2) / NM_TO_FT
self.current_azimuth_deg = math.degrees(math.atan2(self._pos_x_ft, self._pos_y_ft)) % 360
self.current_altitude_ft = self._pos_z_ft
def to_dict(self) -> Dict:
return { "target_id": self.target_id, "active": self.active, "traceable": self.traceable, "trajectory": [wp.to_dict() for wp in self.trajectory], "use_spline": self.use_spline }
class Scenario:
def __init__(self, name: str = "Untitled Scenario"):
self.name = name
self.targets: Dict[int, Target] = {}
def add_target(self, target: Target):
self.targets[target.target_id] = target
def get_target(self, target_id: int) -> Optional[Target]:
return self.targets.get(target_id)
def remove_target(self, target_id: int):
if target_id in self.targets: del self.targets[target_id]
def get_all_targets(self) -> List[Target]:
return list(self.targets.values())
def reset_simulation(self):
for target in self.targets.values(): target.reset_simulation()
def update_state(self, delta_time_s: float):
for target in self.targets.values(): target.update_state(delta_time_s)
def is_finished(self) -> bool:
return all(not target.active for target in self.targets.values())
def to_dict(self) -> Dict:
return { "name": self.name, "targets": [target.to_dict() for target in self.get_all_targets()] }
@classmethod
def from_dict(cls, data: Dict) -> Scenario:
scenario = cls(name=data.get("name", "Loaded Scenario"))
for target_data in data.get("targets", []):
try:
waypoints = []
for wp_data in target_data.get("trajectory", []):
# --- BACKWARD COMPATIBILITY ---
# Convert old Constant Turn to new Dynamic Maneuver
if wp_data.get("maneuver_type") == "Constant Turn":
wp_data["maneuver_type"] = "Dynamic Maneuver"
wp_data["longitudinal_acceleration_g"] = 0.0
wp_data["vertical_acceleration_g"] = 0.0
wp_data["maneuver_type"] = ManeuverType(wp_data["maneuver_type"])
if "turn_direction" in wp_data and wp_data["turn_direction"]:
wp_data["turn_direction"] = TurnDirection(wp_data["turn_direction"])
valid_keys = {f.name for f in fields(Waypoint)}
filtered_wp_data = {k: v for k, v in wp_data.items() if k in valid_keys}
waypoints.append(Waypoint(**filtered_wp_data))
target = Target(target_id=target_data["target_id"], active=target_data.get("active", True), traceable=target_data.get("traceable", True), trajectory=waypoints, use_spline=target_data.get("use_spline", False))
scenario.add_target(target)
except Exception as e:
print(f"Skipping invalid target data: {target_data}. Error: {e}")
return scenario