S1005403_RisCC/target_simulator/gui/ppi_display.py
2025-11-11 10:19:51 +01:00

713 lines
27 KiB
Python

# target_simulator/gui/ppi_display.py
"""
A reusable Tkinter widget that displays a Plan Position Indicator (PPI)
using Matplotlib, capable of showing both live targets and trajectory previews,
and comparing simulated vs. real-time data.
"""
import tkinter as tk
from tkinter import ttk
import math
import time
import logging
import numpy as np
import collections
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import matplotlib as mpl
from typing import List, Dict, Optional
from target_simulator.core.models import Target, Waypoint, ManeuverType, NM_TO_FT
# Module-level logger
logger = logging.getLogger(__name__)
class PPIDisplay(ttk.Frame):
"""
A custom widget for the PPI radar display.
"""
TRAIL_LENGTH = 100
def __init__(
self,
master,
max_range_nm: int = 100,
scan_limit_deg: int = 60,
trail_length: int = None,
):
"""
Inizializza il widget PPI.
Ingressi: master (Tk parent), max_range_nm (int), scan_limit_deg (int), trail_length (int|None)
Uscite: nessuna (side-effect: costruisce widgets e canvas)
Commento: mantiene gli artist Matplotlib per targets, trails e antenna.
"""
super().__init__(master)
self.max_range = max_range_nm
self.scan_limit_deg = scan_limit_deg
self.sim_target_artists: List[mpl.artist.Artist] = []
self.real_target_artists: List[mpl.artist.Artist] = []
self.sim_trail_artists: List[mpl.artist.Artist] = []
self.real_trail_artists: List[mpl.artist.Artist] = []
self.sim_label_artists: List[mpl.artist.Artist] = []
self.real_label_artists: List[mpl.artist.Artist] = []
self.trail_length = trail_length or self.TRAIL_LENGTH
self._trails = {
"simulated": collections.defaultdict(
lambda: collections.deque(maxlen=self.trail_length)
),
"real": collections.defaultdict(
lambda: collections.deque(maxlen=self.trail_length)
),
}
self.preview_artists: List[mpl.artist.Artist] = []
self.preview_path_artists: Dict[int, List[mpl.artist.Artist]] = {}
# Display options
self.show_sim_points_var = tk.BooleanVar(value=True)
self.show_real_points_var = tk.BooleanVar(value=True)
self.show_sim_trail_var = tk.BooleanVar(value=False)
self.show_real_trail_var = tk.BooleanVar(value=False)
self.animate_antenna_var = tk.BooleanVar(value=True)
self.display_mode_var = tk.StringVar(value="North-Up")
self.canvas = None
self._ownship_artist: Optional[mpl.patches.Polygon] = None
self.ownship_heading_deg = 0.0
self._antenna_line_artist: Optional[mpl.lines.Line2D] = None
self._create_controls()
self._create_plot()
self._real_update_timestamps = collections.deque(maxlen=10000)
self._last_update_summary_time = time.monotonic()
self._update_summary_interval_s = 1.0
def _on_display_options_changed(self, *args):
"""Handler invoked when display options (points/trails) change.
Clears current target artists and triggers a redraw so the new
display options are applied immediately.
"""
self.clear_all_targets()
if self.canvas:
self.canvas.draw()
def _on_display_mode_changed(self, *args):
"""Callback when the display mode (North-Up/Heading-Up) changes."""
self._update_plot_orientation()
if self.canvas:
self.canvas.draw_idle()
def _create_controls(self):
"""Create the top control panel containing radar controls and legend.
The panel includes 4 logical sections: Radar, Display Mode, Display
Options and Legend. Widgets are created and wired to the corresponding
callbacks and Tk variables.
"""
top_frame = ttk.Frame(self)
top_frame.pack(side=tk.TOP, fill=tk.X, padx=5, pady=(5, 2))
# Section 1: Radar Controls
radar_frame = ttk.LabelFrame(top_frame, text="Radar", padding=5)
radar_frame.pack(side=tk.LEFT, padx=(0, 5), fill=tk.Y)
range_subframe = ttk.Frame(radar_frame)
range_subframe.pack(anchor="w")
ttk.Label(range_subframe, text="Range (NM):").pack(side=tk.LEFT)
all_steps = [10, 20, 40, 80, 100, 160, 240, 320]
valid_steps = sorted(
[s for s in all_steps if s <= self.max_range]
+ ([self.max_range] if self.max_range not in all_steps else [])
)
self.range_var = tk.IntVar(value=self.max_range)
self.range_selector = ttk.Combobox(
range_subframe,
textvariable=self.range_var,
values=valid_steps,
state="readonly",
width=5,
)
self.range_selector.pack(side=tk.LEFT, padx=5)
ttk.Checkbutton(
radar_frame,
text="Animate Antenna",
variable=self.animate_antenna_var,
command=self._force_redraw,
).pack(anchor="w", pady=(4, 0))
# Section 2: Display Mode
mode_frame = ttk.LabelFrame(top_frame, text="Display Mode", padding=5)
mode_frame.pack(side=tk.LEFT, padx=5, fill=tk.Y)
ttk.Radiobutton(
mode_frame,
text="North-Up",
variable=self.display_mode_var,
value="North-Up",
command=self._on_display_mode_changed,
).pack(anchor="w")
ttk.Radiobutton(
mode_frame,
text="Heading-Up",
variable=self.display_mode_var,
value="Heading-Up",
command=self._on_display_mode_changed,
).pack(anchor="w")
# Section 3: Display Options
options_frame = ttk.LabelFrame(top_frame, text="Display Options", padding=5)
options_frame.pack(side=tk.LEFT, padx=5, fill=tk.Y)
ttk.Checkbutton(
options_frame,
text="Sim Points",
variable=self.show_sim_points_var,
command=self._on_display_options_changed,
).grid(row=0, column=0, sticky="w", padx=5)
ttk.Checkbutton(
options_frame,
text="Real Points",
variable=self.show_real_points_var,
command=self._on_display_options_changed,
).grid(row=0, column=1, sticky="w", padx=5)
ttk.Checkbutton(
options_frame,
text="Sim Trail",
variable=self.show_sim_trail_var,
command=self._on_display_options_changed,
).grid(row=1, column=0, sticky="w", padx=5)
ttk.Checkbutton(
options_frame,
text="Real Trail",
variable=self.show_real_trail_var,
command=self._on_display_options_changed,
).grid(row=1, column=1, sticky="w", padx=5)
# Spacer to push the legend to the right
spacer = ttk.Frame(top_frame)
spacer.pack(side=tk.LEFT, expand=True, fill=tk.X)
# Section 4: Legend
legend_frame = ttk.LabelFrame(top_frame, text="Legend", padding=5)
legend_frame.pack(side=tk.LEFT, padx=5, fill=tk.Y)
# Ownship
own_sw = tk.Canvas(legend_frame, width=16, height=12, highlightthickness=0)
own_sw.create_rectangle(0, 0, 16, 12, fill="cyan", outline="black")
own_sw.grid(row=0, column=0, padx=(0, 4), pady=(0, 2))
ttk.Label(legend_frame, text="Ownship").grid(row=0, column=1, sticky="w")
# Simulated
sim_sw = tk.Canvas(legend_frame, width=16, height=12, highlightthickness=0)
sim_sw.create_rectangle(0, 0, 16, 12, fill="green", outline="black")
sim_sw.grid(row=1, column=0, padx=(0, 4), pady=(0, 2))
ttk.Label(legend_frame, text="Simulated").grid(row=1, column=1, sticky="w")
# Real
real_sw = tk.Canvas(legend_frame, width=16, height=12, highlightthickness=0)
real_sw.create_rectangle(0, 0, 16, 12, fill="red", outline="black")
real_sw.grid(row=2, column=0, padx=(0, 4))
ttk.Label(legend_frame, text="Real").grid(row=2, column=1, sticky="w")
def _force_redraw(self):
"""Request an immediate (idle) redraw of the Matplotlib canvas.
This is used by UI controls that change visual options to avoid
blocking synchronous draws.
"""
if self.canvas:
self.canvas.draw_idle()
def _create_plot(self):
"""Create the Matplotlib polar Figure and initial plot artists.
This sets up axes, gridlines, preview artists, ownship marker and
antenna/scan line artists used by the rest of the widget.
"""
fig = Figure(figsize=(5, 5), dpi=100, facecolor="#3E3E3E")
fig.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.05)
self.ax = fig.add_subplot(111, projection="polar", facecolor="#2E2E2E")
self.ax.set_theta_zero_location("N")
self.ax.set_theta_direction(1) # Set to CCW explicitly
self.ax.set_rlabel_position(90)
self.ax.set_ylim(0, self.range_var.get())
angles_deg = np.arange(0, 360, 30)
labels = [f"{(a if a <= 180 else a - 360)}°" for a in angles_deg]
self.ax.set_thetagrids(angles_deg, labels)
self.ax.tick_params(axis="x", colors="white", labelsize=8)
self.ax.tick_params(axis="y", colors="white", labelsize=8)
self.ax.grid(color="white", linestyle="--", linewidth=0.5, alpha=0.5)
self.ax.spines["polar"].set_color("white")
self.ax.set_title("PPI Display", color="white")
# Define ownship as a patch (triangle) that we can rotate
self._ownship_artist = mpl.patches.Polygon(
[[-1, -1]], # Placeholder
closed=True,
facecolor="cyan",
edgecolor="black",
zorder=10
)
self.ax.add_patch(self._ownship_artist)
(self._path_plot,) = self.ax.plot([], [], "g--", linewidth=1.5, zorder=3)
(self._start_plot,) = self.ax.plot([], [], "go", markersize=8, zorder=3)
(self._waypoints_plot,) = self.ax.plot(
[], [], "y+", markersize=10, mew=2, zorder=3
)
self.preview_artists = [self._path_plot, self._start_plot, self._waypoints_plot]
(self._scan_line_1,) = self.ax.plot([], [], "y--", linewidth=1, zorder=1)
(self._scan_line_2,) = self.ax.plot([], [], "y--", linewidth=1, zorder=1)
(self._antenna_line_artist,) = self.ax.plot(
[],
[],
color="lightgray",
linestyle="--",
linewidth=1.2,
alpha=0.85,
zorder=2,
)
logger.debug(f"Antenna artist created: {self._antenna_line_artist}")
self.canvas = FigureCanvasTkAgg(fig, master=self)
self.canvas.draw()
self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
self.range_selector.bind("<<ComboboxSelected>>", self._on_range_selected)
self._update_plot_orientation() # Initial draw
def update_ownship_state(self, heading_deg: float):
"""Updates the ownship's visual representation on the PPI."""
if self.ownship_heading_deg != heading_deg:
self.ownship_heading_deg = heading_deg
self._update_plot_orientation()
def _update_plot_orientation(self):
"""Applies rotation to the plot or ownship icon based on display mode."""
if not self.ax or not self._ownship_artist:
return
mode = self.display_mode_var.get()
# Convention: Azimuth/Heading is 0=N, positive=CCW (Left)
# Matplotlib theta is 0=East, positive=CCW.
# With zero_location="N", theta becomes 0=North, positive=CCW.
heading_rad = np.deg2rad(self.ownship_heading_deg)
max_r = self.ax.get_ylim()[1]
# Define ownship triangle shape in polar coordinates (theta, r)
r_scale = max_r * 0.04
nose = (0, r_scale)
wing_angle = np.deg2rad(140)
left_wing = (wing_angle, r_scale * 0.8)
right_wing = (-wing_angle, r_scale * 0.8)
base_verts_polar = np.array([nose, left_wing, right_wing])
if mode == "Heading-Up":
# Rotate the entire grid by the heading angle
self.ax.set_theta_offset(np.pi / 2 - heading_rad)
# To make ownship and scan lines appear fixed, we must "counter-rotate"
# them by drawing them at an angle equal to the heading.
verts_polar = base_verts_polar.copy()
verts_polar[:, 0] += heading_rad
self._ownship_artist.set_xy(verts_polar)
limit_rad = np.deg2rad(self.scan_limit_deg)
self._scan_line_1.set_data([heading_rad + limit_rad, heading_rad + limit_rad], [0, max_r])
self._scan_line_2.set_data([heading_rad - limit_rad, heading_rad - limit_rad], [0, max_r])
else: # North-Up
# Keep grid fixed with North up
self.ax.set_theta_offset(np.pi / 2)
# Rotate ownship vertices by adding heading to theta
verts_polar = base_verts_polar.copy()
verts_polar[:, 0] += heading_rad
self._ownship_artist.set_xy(verts_polar)
# Rotate scan lines by adding heading to theta
limit_rad = np.deg2rad(self.scan_limit_deg)
self._scan_line_1.set_data([heading_rad + limit_rad, heading_rad + limit_rad], [0, max_r])
self._scan_line_2.set_data([heading_rad - limit_rad, heading_rad - limit_rad], [0, max_r])
if self.canvas:
self.canvas.draw_idle()
def clear_all_targets(self):
"""Clears all target artists from the display."""
all_artists = (
self.sim_target_artists
+ self.real_target_artists
+ self.sim_trail_artists
+ self.real_trail_artists
+ self.sim_label_artists
+ self.real_label_artists
)
for artist in all_artists:
artist.remove()
self.sim_target_artists.clear()
self.real_target_artists.clear()
self.sim_trail_artists.clear()
self.real_trail_artists.clear()
self.sim_label_artists.clear()
self.real_label_artists.clear()
def update_simulated_targets(self, targets: List[Target]):
"""Updates and redraws only the simulated targets."""
self._update_target_category(targets, "simulated")
if self.canvas:
self.canvas.draw()
def update_real_targets(self, targets: List[Target]):
"""Updates and redraws only the real targets."""
try:
now = time.monotonic()
self._real_update_timestamps.append(now)
if (
now - self._last_update_summary_time
) >= self._update_summary_interval_s:
self._last_update_summary_time = now
except Exception:
pass
self._update_target_category(targets, "real")
if self.canvas:
self.canvas.draw()
def get_real_update_rate(self, window_seconds: float = 1.0) -> float:
"""
Returns approximate PPI "real targets" update rate (updates/sec).
"""
try:
now = time.monotonic()
cutoff = now - float(window_seconds)
count = sum(1 for ts in self._real_update_timestamps if ts >= cutoff)
return count / float(window_seconds) if window_seconds > 0 else float(count)
except Exception:
return 0.0
def _update_target_category(self, new_data: List[Target], category: str):
"""
Generic helper to update targets for a specific category ('simulated' or 'real').
"""
if category == "simulated":
target_artists, trail_artists, label_artists = (
self.sim_target_artists,
self.sim_trail_artists,
self.sim_label_artists,
)
trail_data, show_points, show_trail = (
self._trails["simulated"],
self.show_sim_points_var.get(),
self.show_sim_trail_var.get(),
)
color, trail_color = "green", "limegreen"
else:
target_artists, trail_artists, label_artists = (
self.real_target_artists,
self.real_trail_artists,
self.real_label_artists,
)
trail_data, show_points, show_trail = (
self._trails["real"],
self.show_real_points_var.get(),
self.show_real_trail_var.get(),
)
color, trail_color = "red", "tomato"
for artist in target_artists + trail_artists + label_artists:
artist.remove()
target_artists.clear()
trail_artists.clear()
label_artists.clear()
if show_points or show_trail:
for t in new_data:
if t.active:
pos = (np.deg2rad(t.current_azimuth_deg), t.current_range_nm)
trail_data[t.target_id].append(pos)
if show_points:
active_targets = [t for t in new_data if t.active]
if active_targets:
self._draw_target_visuals(
active_targets, color, target_artists, label_artists
)
inactive_targets = [t for t in new_data if not t.active]
if inactive_targets and category == "simulated":
self._draw_inactive_markers(
inactive_targets, color, target_artists, label_artists
)
if show_trail:
self._draw_trails(trail_data, trail_color, trail_artists)
def _draw_inactive_markers(
self,
targets: List[Target],
color: str,
artist_list: List,
label_artist_list: List,
):
for target in targets:
try:
r_nm = target.current_range_nm
theta_rad_plot = np.deg2rad(target.current_azimuth_deg)
(dot,) = self.ax.plot(
theta_rad_plot,
r_nm,
"o",
markersize=6,
color=color,
alpha=0.6,
zorder=5,
)
artist_list.append(dot)
(x_mark,) = self.ax.plot(
theta_rad_plot,
r_nm,
marker="x",
color="yellow",
markersize=8,
markeredgewidth=0.9,
linestyle="",
zorder=6,
)
label_artist_list.append(x_mark)
except Exception:
pass
def _draw_target_visuals(
self,
targets: List[Target],
color: str,
artist_list: List,
label_artist_list: List,
):
vector_len_nm = self.range_var.get() / 20.0
marker_size = 8 if color == "green" else 6
for target in targets:
r_nm = target.current_range_nm
theta_rad_plot = np.deg2rad(target.current_azimuth_deg)
(dot,) = self.ax.plot(
theta_rad_plot, r_nm, "o", markersize=marker_size, color=color, zorder=5
)
artist_list.append(dot)
heading_relative_to_north_rad = np.deg2rad(target.current_heading_deg)
x_start_rel_nm = r_nm * math.sin(theta_rad_plot)
y_start_rel_nm = r_nm * math.cos(theta_rad_plot)
dx_nm = vector_len_nm * math.sin(heading_relative_to_north_rad)
dy_nm = vector_len_nm * math.cos(heading_relative_to_north_rad)
x_end_rel_nm = x_start_rel_nm + dx_nm
y_end_rel_nm = y_start_rel_nm + dy_nm
r_end_nm = math.hypot(x_end_rel_nm, y_end_rel_nm)
theta_end_rad_plot = math.atan2(x_end_rel_nm, y_end_rel_nm)
(line,) = self.ax.plot(
[theta_rad_plot, theta_end_rad_plot],
[r_nm, r_end_nm],
color=color,
linewidth=1.2,
zorder=4,
)
artist_list.append(line)
txt = self.ax.text(
theta_rad_plot,
r_nm + (vector_len_nm * 0.5),
str(target.target_id),
color="white",
fontsize=8,
ha="center",
va="bottom",
zorder=7,
)
label_artist_list.append(txt)
def _draw_trails(self, trail_data: Dict, color: str, artist_list: List):
for trail in trail_data.values():
if len(trail) > 1:
thetas, rs = zip(*trail)
(line,) = self.ax.plot(
thetas,
rs,
color=color,
linestyle="-",
linewidth=0.8,
alpha=0.7,
zorder=3,
)
artist_list.append(line)
def clear_trails(self):
self._trails["simulated"].clear()
self._trails["real"].clear()
self.clear_all_targets()
if self.canvas:
self.canvas.draw()
def _update_scan_lines(self):
"""Update scan/sector indicator lines."""
self._update_plot_orientation()
def _on_range_selected(self, event=None):
"""Adjust plot limits when the range selector value changes.
Ensures scan lines and the canvas are updated to match the new range.
"""
self.ax.set_ylim(0, self.range_var.get())
self._update_plot_orientation()
if self.canvas:
self.canvas.draw()
def clear_previews(self):
"""Clear any scenario or trajectory preview artists from the plot."""
for artist in self.preview_artists:
artist.set_data([], [])
for arts in self.preview_path_artists.values():
for a in arts:
a.remove()
self.preview_path_artists.clear()
if self.canvas:
self.canvas.draw()
def draw_scenario_preview(self, scenario):
self.clear_previews()
if scenario is None:
return
for target in scenario.get_all_targets():
try:
path, _ = Target.generate_path_from_waypoints(
target.trajectory, target.use_spline
)
if not path:
continue
path_thetas, path_rs = [], []
for point in path:
x_ft, y_ft = point[1], point[2]
r_ft = math.hypot(x_ft, y_ft)
az_rad_plot = math.atan2(x_ft, y_ft)
path_rs.append(r_ft / NM_TO_FT)
path_thetas.append(az_rad_plot)
(line_art,) = self.ax.plot(
path_thetas,
path_rs,
color="limegreen",
linestyle="--",
linewidth=1.2,
alpha=0.9,
)
(start_art,) = self.ax.plot(
[path_thetas[0]], [path_rs[0]], "go", markersize=6
)
self.preview_path_artists[target.target_id] = [line_art, start_art]
except Exception:
logger.exception(
"Failed to draw preview for target %s",
getattr(target, "target_id", "?"),
)
if self.canvas:
self.canvas.draw()
def draw_trajectory_preview(self, waypoints: List[Waypoint], use_spline: bool):
self.clear_previews()
self.clear_trails()
if not waypoints or waypoints[0].maneuver_type != ManeuverType.FLY_TO_POINT:
return
path, _ = Target.generate_path_from_waypoints(waypoints, use_spline)
if not path:
return
path_thetas, path_rs = [], []
for point in path:
x_ft, y_ft = point[1], point[2]
r_ft = math.hypot(x_ft, y_ft)
az_rad_plot = math.atan2(x_ft, y_ft)
path_rs.append(r_ft / NM_TO_FT)
path_thetas.append(az_rad_plot)
self._path_plot.set_data(path_thetas, path_rs)
wp_thetas, wp_rs = [], []
for wp in waypoints:
if wp.maneuver_type == ManeuverType.FLY_TO_POINT:
r_nm = wp.target_range_nm or 0.0
az_rad_plot = np.deg2rad(wp.target_azimuth_deg or 0.0)
wp_rs.append(r_nm)
wp_thetas.append(az_rad_plot)
self._waypoints_plot.set_data(wp_thetas, wp_rs)
start_wp = waypoints[0]
start_r = start_wp.target_range_nm or 0.0
start_theta = np.deg2rad(start_wp.target_azimuth_deg or 0.0)
self._start_plot.set_data([start_theta], [start_r])
if self.canvas:
self.canvas.draw()
def reconfigure_radar(self, max_range_nm: int, scan_limit_deg: int):
self.max_range, self.scan_limit_deg = max_range_nm, scan_limit_deg
steps = [10, 20, 40, 80, 100, 160, 240, 320]
valid_steps = sorted(
[s for s in steps if s <= max_range_nm]
+ ([max_range_nm] if max_range_nm not in steps else [])
)
self.range_selector["values"] = valid_steps
if self.range_var.get() not in valid_steps:
self.range_var.set(max_range_nm)
self._on_range_selected()
def render_antenna_line(self, az_deg: Optional[float]):
"""Directly renders the antenna line at a given absolute azimuth."""
try:
if self._antenna_line_artist is None:
logger.warning("Antenna artist is not initialized. Cannot render.")
return
if az_deg is None or not self.animate_antenna_var.get():
self._antenna_line_artist.set_visible(False)
else:
az_float = float(az_deg)
final_az_for_plot = az_float
if self.display_mode_var.get() == "Heading-Up":
# The incoming az_deg is absolute. To display it relative to the
# ownship (which is fixed at 0 deg), we subtract the ownship heading.
final_az_for_plot -= self.ownship_heading_deg
# Convert final angle to theta for Matplotlib (0=N, positive=CCW)
theta = np.deg2rad(final_az_for_plot)
max_r = self.ax.get_ylim()[1]
#logger.debug(
# f"Rendering antenna: az_in={az_deg}, mode={self.display_mode_var.get()}, "
# f"own_hdg={self.ownship_heading_deg}, final_az={final_az_for_plot}, theta={theta}"
#)
self._antenna_line_artist.set_data([theta, theta], [0, max_r])
self._antenna_line_artist.set_visible(True)
if self.canvas:
self.canvas.draw_idle()
except Exception:
logger.exception("Error rendering antenna line")