S1005403_RisCC/target_simulator/utils/clock_synchronizer.py
2025-11-14 15:47:48 +01:00

182 lines
6.8 KiB
Python

# target_simulator/utils/clock_synchronizer.py
"""Clock synchronization helpers.
This module provides ``ClockSynchronizer``, a small utility that maps a
remote 32-bit wrapping timetag into the local monotonic clock. It uses a
linear regression model (NumPy) to estimate offset and drift and estimates
one-way latency.
Note: NumPy is required by this module; an ImportError is raised when it is
not available.
"""
import collections
import threading
import time
from typing import List, Tuple
# NumPy is a strong recommendation for linear regression.
# If it's not already a dependency, it should be added.
try:
import numpy as np
NUMPY_AVAILABLE = True
except ImportError:
NUMPY_AVAILABLE = False
class ClockSynchronizer:
"""Synchronize a remote 32-bit wrapping counter to local monotonic time.
The synchronizer records pairs of (server_timetag, client_reception_time),
unwraps the server counter across wrap-around events and fits a linear
model (client_time = m * server_ticks + b). The fit is performed using
NumPy's polyfit when a configurable minimum number of samples is
available.
"""
# Constants for a 32-bit counter
_COUNTER_MAX = 2**32
_WRAP_THRESHOLD = 2**31 # Detect wrap if decrease is > half the max value
def __init__(
self,
history_size: int = 100,
min_samples_for_fit: int = 20,
update_interval: int = 100,
):
"""Create a new ClockSynchronizer.
Args:
history_size: Maximum number of recent samples retained for fitting.
min_samples_for_fit: Minimum samples required before performing a
regression fit.
update_interval: The model will be refit every `update_interval` samples.
Raises:
ImportError: If NumPy is not available on the system.
"""
if not NUMPY_AVAILABLE:
raise ImportError("NumPy is required for the ClockSynchronizer.")
self._lock = threading.Lock()
self._history: collections.deque = collections.deque(maxlen=history_size)
self._min_samples = min_samples_for_fit
self._update_interval = max(1, update_interval)
self._update_counter = 0
# State for timestamp unwrapping
self._wrap_count: int = 0
self._last_raw_timetag: int | None = None
# Linear model parameters: client_time = m * server_unwrapped_ticks + b
self._m: float = 0.0 # Slope (client seconds per server tick)
self._b: float = 0.0 # Intercept (client time when server time was 0)
# Estimated one-way latency from server to client
self._average_latency_s: float = 0.0
def add_sample(self, raw_server_timetag: int, client_reception_time: float):
"""Add a new (server_timetag, client_time) sample.
The method will unwrap the provided 32-bit timetag accounting for wrap
events and append the unwrapped pair to the internal history. The
regression fit is only recomputed periodically based on `update_interval`.
Args:
raw_server_timetag: Raw 32-bit server timetag.
client_reception_time: Local monotonic time of the packet reception.
"""
with self._lock:
# --- Timestamp Unwrapping Logic ---
if self._last_raw_timetag is None:
# First sample, assume no wraps yet.
self._last_raw_timetag = raw_server_timetag
else:
# Check for a wrap-around
diff = self._last_raw_timetag - raw_server_timetag
if diff > self._WRAP_THRESHOLD:
self._wrap_count += 1
self._last_raw_timetag = raw_server_timetag
unwrapped_timetag = (
raw_server_timetag + self._wrap_count * self._COUNTER_MAX
)
# Add the new sample to history
self._history.append((unwrapped_timetag, client_reception_time))
# --- Throttled Model Update ---
self._update_counter += 1
if self._update_counter >= self._update_interval:
self._update_counter = 0
self._update_model()
def _update_model(self):
"""Internal: fit a linear model to the sample history.
This updates slope/intercept (m, b) and computes an estimated average
one-way latency. Must be called while holding the instance lock.
"""
if len(self._history) < self._min_samples:
# Not enough data for a reliable fit
return
x_vals = np.array([sample[0] for sample in self._history])
y_vals = np.array([sample[1] for sample in self._history])
try:
m, b = np.polyfit(x_vals, y_vals, 1)
self._m = m
self._b = b
# --- Calculate Average Latency ---
# Estimated generation time for each sample based on the new model
estimated_generation_times = self._m * x_vals + self._b
# Latency is the difference between reception and estimated generation
latencies = y_vals - estimated_generation_times
# Update the average latency, filtering out negative values which are artifacts
positive_latencies = latencies[latencies >= 0]
if len(positive_latencies) > 0:
self._average_latency_s = np.mean(positive_latencies)
else:
self._average_latency_s = 0.0
except np.linalg.LinAlgError:
pass
def to_client_time(self, raw_server_timetag: int) -> float:
"""Map a raw server timetag to an estimated client monotonic time.
The method unwraps the provided 32-bit timetag using the current
wrap count and applies the linear model (m, b) to estimate the
corresponding local monotonic time.
Args:
raw_server_timetag: Raw 32-bit server timetag.
Returns:
Estimated client monotonic time (float).
"""
with self._lock:
current_wrap_count = self._wrap_count
if self._last_raw_timetag is not None:
# Handle cases where timetag might be from a slightly older packet
diff = self._last_raw_timetag - raw_server_timetag
if diff < -self._WRAP_THRESHOLD: # Wrapped in the other direction
current_wrap_count -= 1
unwrapped_timetag = (
raw_server_timetag + current_wrap_count * self._COUNTER_MAX
)
estimated_time = self._m * unwrapped_timetag + self._b
return estimated_time
def get_average_latency_s(self) -> float:
"""Return the estimated average one-way server->client latency in seconds.
Returns 0.0 when insufficient data is available to compute the metric.
"""
with self._lock:
return self._average_latency_s