609 lines
25 KiB
Python
609 lines
25 KiB
Python
# target_simulator/gui/ppi_display.py
|
|
|
|
"""
|
|
A reusable Tkinter widget that displays a Plan Position Indicator (PPI)
|
|
using Matplotlib, capable of showing both live targets and trajectory previews,
|
|
and comparing simulated vs. real-time data.
|
|
"""
|
|
|
|
import tkinter as tk
|
|
from tkinter import ttk
|
|
import math
|
|
import time
|
|
import logging
|
|
import numpy as np
|
|
import collections
|
|
from matplotlib.figure import Figure
|
|
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
|
|
import matplotlib as mpl
|
|
from typing import List, Dict
|
|
|
|
from target_simulator.core.models import Target, Waypoint, ManeuverType, NM_TO_FT
|
|
|
|
# Module-level logger
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PPIDisplay(ttk.Frame):
|
|
"""
|
|
A custom widget for the PPI radar display.
|
|
"""
|
|
|
|
TRAIL_LENGTH = 100
|
|
|
|
def __init__(
|
|
self,
|
|
master,
|
|
max_range_nm: int = 100,
|
|
scan_limit_deg: int = 60,
|
|
trail_length: int = None,
|
|
):
|
|
super().__init__(master)
|
|
self.max_range = max_range_nm
|
|
self.scan_limit_deg = scan_limit_deg
|
|
self.sim_target_artists: List[mpl.artist.Artist] = []
|
|
self.real_target_artists: List[mpl.artist.Artist] = []
|
|
self.sim_trail_artists: List[mpl.artist.Artist] = []
|
|
self.real_trail_artists: List[mpl.artist.Artist] = []
|
|
self.sim_label_artists: List[mpl.artist.Artist] = []
|
|
self.real_label_artists: List[mpl.artist.Artist] = []
|
|
self.trail_length = trail_length or self.TRAIL_LENGTH
|
|
self._trails = {
|
|
"simulated": collections.defaultdict(
|
|
lambda: collections.deque(maxlen=self.trail_length)
|
|
),
|
|
"real": collections.defaultdict(
|
|
lambda: collections.deque(maxlen=self.trail_length)
|
|
),
|
|
}
|
|
self.preview_artists: List[mpl.artist.Artist] = []
|
|
self.preview_path_artists: Dict[int, List[mpl.artist.Artist]] = {}
|
|
|
|
# Display options
|
|
self.show_sim_points_var = tk.BooleanVar(value=True)
|
|
self.show_real_points_var = tk.BooleanVar(value=True)
|
|
self.show_sim_trail_var = tk.BooleanVar(value=False)
|
|
self.show_real_trail_var = tk.BooleanVar(value=False)
|
|
self.animate_antenna_var = tk.BooleanVar(value=True)
|
|
self.display_mode_var = tk.StringVar(value="North-Up")
|
|
|
|
self.canvas = None
|
|
self._ownship_artist: mpl.lines.Line2D | None = None
|
|
self.ownship_heading_deg = 0.0
|
|
|
|
self._create_controls()
|
|
self._create_plot()
|
|
|
|
self._real_update_timestamps = collections.deque(maxlen=10000)
|
|
self._last_update_summary_time = time.monotonic()
|
|
self._update_summary_interval_s = 1.0
|
|
|
|
self._antenna_state = {
|
|
"last_az_deg": None,
|
|
"last_ts": None,
|
|
"next_az_deg": None,
|
|
"next_ts": None,
|
|
"animating": False,
|
|
"tick_ms": 33,
|
|
}
|
|
self._antenna_line_artist: mpl.lines.Line2D | None = None
|
|
|
|
def _on_display_options_changed(self, *args):
|
|
self.clear_all_targets()
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def _on_display_mode_changed(self, *args):
|
|
"""Callback when the display mode (North-Up/Heading-Up) changes."""
|
|
self._update_plot_orientation()
|
|
if self.canvas:
|
|
self.canvas.draw_idle()
|
|
|
|
def _create_controls(self):
|
|
"""Creates the organized 4-section control panel."""
|
|
top_frame = ttk.Frame(self)
|
|
top_frame.pack(side=tk.TOP, fill=tk.X, padx=5, pady=(5, 2))
|
|
|
|
# Section 1: Radar Controls
|
|
radar_frame = ttk.LabelFrame(top_frame, text="Radar", padding=5)
|
|
radar_frame.pack(side=tk.LEFT, padx=(0, 5), fill=tk.Y)
|
|
|
|
range_subframe = ttk.Frame(radar_frame)
|
|
range_subframe.pack(anchor='w')
|
|
ttk.Label(range_subframe, text="Range (NM):").pack(side=tk.LEFT)
|
|
all_steps = [10, 20, 40, 80, 100, 160, 240, 320]
|
|
valid_steps = sorted([s for s in all_steps if s <= self.max_range] + ([self.max_range] if self.max_range not in all_steps else []))
|
|
self.range_var = tk.IntVar(value=self.max_range)
|
|
self.range_selector = ttk.Combobox(
|
|
range_subframe, textvariable=self.range_var, values=valid_steps,
|
|
state="readonly", width=5
|
|
)
|
|
self.range_selector.pack(side=tk.LEFT, padx=5)
|
|
|
|
ttk.Checkbutton(
|
|
radar_frame, text="Animate Antenna", variable=self.animate_antenna_var,
|
|
command=self._on_antenna_animate_changed
|
|
).pack(anchor='w', pady=(4, 0))
|
|
|
|
# Section 2: Display Mode
|
|
mode_frame = ttk.LabelFrame(top_frame, text="Display Mode", padding=5)
|
|
mode_frame.pack(side=tk.LEFT, padx=5, fill=tk.Y)
|
|
ttk.Radiobutton(
|
|
mode_frame, text="North-Up", variable=self.display_mode_var,
|
|
value="North-Up", command=self._on_display_mode_changed
|
|
).pack(anchor='w')
|
|
ttk.Radiobutton(
|
|
mode_frame, text="Heading-Up", variable=self.display_mode_var,
|
|
value="Heading-Up", command=self._on_display_mode_changed
|
|
).pack(anchor='w')
|
|
|
|
# Section 3: Display Options
|
|
options_frame = ttk.LabelFrame(top_frame, text="Display Options", padding=5)
|
|
options_frame.pack(side=tk.LEFT, padx=5, fill=tk.Y)
|
|
ttk.Checkbutton(
|
|
options_frame, text="Sim Points", variable=self.show_sim_points_var,
|
|
command=self._on_display_options_changed
|
|
).grid(row=0, column=0, sticky="w", padx=5)
|
|
ttk.Checkbutton(
|
|
options_frame, text="Real Points", variable=self.show_real_points_var,
|
|
command=self._on_display_options_changed
|
|
).grid(row=0, column=1, sticky="w", padx=5)
|
|
ttk.Checkbutton(
|
|
options_frame, text="Sim Trail", variable=self.show_sim_trail_var,
|
|
command=self._on_display_options_changed
|
|
).grid(row=1, column=0, sticky="w", padx=5)
|
|
ttk.Checkbutton(
|
|
options_frame, text="Real Trail", variable=self.show_real_trail_var,
|
|
command=self._on_display_options_changed
|
|
).grid(row=1, column=1, sticky="w", padx=5)
|
|
|
|
# Spacer to push the legend to the right
|
|
spacer = ttk.Frame(top_frame)
|
|
spacer.pack(side=tk.LEFT, expand=True, fill=tk.X)
|
|
|
|
# Section 4: Legend
|
|
legend_frame = ttk.LabelFrame(top_frame, text="Legend", padding=5)
|
|
legend_frame.pack(side=tk.LEFT, padx=5, fill=tk.Y)
|
|
|
|
# Ownship
|
|
own_sw = tk.Canvas(legend_frame, width=16, height=12, highlightthickness=0)
|
|
own_sw.create_rectangle(0, 0, 16, 12, fill="cyan", outline="black")
|
|
own_sw.grid(row=0, column=0, padx=(0, 4), pady=(0, 2))
|
|
ttk.Label(legend_frame, text="Ownship").grid(row=0, column=1, sticky="w")
|
|
|
|
# Simulated
|
|
sim_sw = tk.Canvas(legend_frame, width=16, height=12, highlightthickness=0)
|
|
sim_sw.create_rectangle(0, 0, 16, 12, fill="green", outline="black")
|
|
sim_sw.grid(row=1, column=0, padx=(0, 4), pady=(0, 2))
|
|
ttk.Label(legend_frame, text="Simulated").grid(row=1, column=1, sticky="w")
|
|
|
|
# Real
|
|
real_sw = tk.Canvas(legend_frame, width=16, height=12, highlightthickness=0)
|
|
real_sw.create_rectangle(0, 0, 16, 12, fill="red", outline="black")
|
|
real_sw.grid(row=2, column=0, padx=(0, 4))
|
|
ttk.Label(legend_frame, text="Real").grid(row=2, column=1, sticky="w")
|
|
|
|
def _create_plot(self):
|
|
fig = Figure(figsize=(5, 5), dpi=100, facecolor="#3E3E3E")
|
|
fig.subplots_adjust(left=0.05, right=0.95, top=0.9, bottom=0.05)
|
|
self.ax = fig.add_subplot(111, projection="polar", facecolor="#2E2E2E")
|
|
self.ax.set_theta_zero_location("N")
|
|
self.ax.set_theta_direction(-1) # Clockwise
|
|
self.ax.set_rlabel_position(90)
|
|
self.ax.set_ylim(0, self.range_var.get())
|
|
angles_deg = np.arange(0, 360, 30)
|
|
labels = [f"{a}°" for a in angles_deg]
|
|
self.ax.set_thetagrids(angles_deg, labels)
|
|
self.ax.tick_params(axis="x", colors="white", labelsize=8)
|
|
self.ax.tick_params(axis="y", colors="white", labelsize=8)
|
|
self.ax.grid(color="white", linestyle="--", linewidth=0.5, alpha=0.5)
|
|
self.ax.spines["polar"].set_color("white")
|
|
self.ax.set_title("PPI Display", color="white")
|
|
|
|
(self._ownship_artist,) = self.ax.plot(
|
|
[0], [0],
|
|
marker='^', markersize=12, color='cyan',
|
|
markeredgecolor='black', zorder=10,
|
|
transform=self.ax.transData
|
|
)
|
|
self._ownship_artist.set_visible(True)
|
|
|
|
(self._path_plot,) = self.ax.plot([], [], "g--", linewidth=1.5)
|
|
(self._start_plot,) = self.ax.plot([], [], "go", markersize=8)
|
|
(self._waypoints_plot,) = self.ax.plot([], [], "y+", markersize=10, mew=2)
|
|
self.preview_artists = [self._path_plot, self._start_plot, self._waypoints_plot]
|
|
|
|
limit_rad = np.deg2rad(self.scan_limit_deg)
|
|
(self._scan_line_1,) = self.ax.plot([limit_rad, limit_rad], [0, self.max_range], "y--", linewidth=1)
|
|
(self._scan_line_2,) = self.ax.plot([-limit_rad, -limit_rad], [0, self.max_range], "y--", linewidth=1)
|
|
(self._antenna_line_artist,) = self.ax.plot([], [], color="lightgray", linestyle="--", linewidth=1.2, alpha=0.85)
|
|
|
|
self.canvas = FigureCanvasTkAgg(fig, master=self)
|
|
self.canvas.draw()
|
|
self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True)
|
|
self.range_selector.bind("<<ComboboxSelected>>", self._on_range_selected)
|
|
self._update_scan_lines()
|
|
|
|
def update_ownship_state(self, heading_deg: float):
|
|
"""Updates the ownship's visual representation on the PPI."""
|
|
if self.ownship_heading_deg != heading_deg:
|
|
self.ownship_heading_deg = heading_deg
|
|
self._update_plot_orientation()
|
|
|
|
def _update_plot_orientation(self):
|
|
"""Applies rotation to the plot or ownship icon based on display mode."""
|
|
if not self.ax or not self._ownship_artist:
|
|
return
|
|
|
|
mode = self.display_mode_var.get()
|
|
heading_rad = np.deg2rad(self.ownship_heading_deg)
|
|
|
|
if mode == "Heading-Up":
|
|
self.ax.set_theta_offset(math.pi / 2 - heading_rad)
|
|
transform = mpl.transforms.IdentityTransform()
|
|
self._ownship_artist.set_transform(transform)
|
|
else: # North-Up
|
|
self.ax.set_theta_offset(math.pi / 2)
|
|
transform = mpl.transforms.Affine2D().rotate(-heading_rad) + self.ax.transData
|
|
self._ownship_artist.set_transform(transform)
|
|
|
|
if self.canvas:
|
|
self.canvas.draw_idle()
|
|
|
|
def clear_all_targets(self):
|
|
"""Clears all target artists from the display."""
|
|
all_artists = (
|
|
self.sim_target_artists
|
|
+ self.real_target_artists
|
|
+ self.sim_trail_artists
|
|
+ self.real_trail_artists
|
|
+ self.sim_label_artists
|
|
+ self.real_label_artists
|
|
)
|
|
for artist in all_artists:
|
|
artist.remove()
|
|
self.sim_target_artists.clear()
|
|
self.real_target_artists.clear()
|
|
self.sim_trail_artists.clear()
|
|
self.real_trail_artists.clear()
|
|
self.sim_label_artists.clear()
|
|
self.real_label_artists.clear()
|
|
|
|
def update_simulated_targets(self, targets: List[Target]):
|
|
"""Updates and redraws only the simulated targets."""
|
|
self._update_target_category(targets, "simulated")
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def update_real_targets(self, targets: List[Target]):
|
|
"""Updates and redraws only the real targets."""
|
|
try:
|
|
now = time.monotonic()
|
|
self._real_update_timestamps.append(now)
|
|
if (now - self._last_update_summary_time) >= self._update_summary_interval_s:
|
|
self._last_update_summary_time = now
|
|
except Exception:
|
|
pass
|
|
|
|
self._update_target_category(targets, "real")
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def get_real_update_rate(self, window_seconds: float = 1.0) -> float:
|
|
"""
|
|
Returns approximate PPI "real targets" update rate (updates/sec).
|
|
"""
|
|
try:
|
|
now = time.monotonic()
|
|
cutoff = now - float(window_seconds)
|
|
count = sum(1 for ts in self._real_update_timestamps if ts >= cutoff)
|
|
return count / float(window_seconds) if window_seconds > 0 else float(count)
|
|
except Exception:
|
|
return 0.0
|
|
|
|
def _update_target_category(self, new_data: List[Target], category: str):
|
|
"""
|
|
Generic helper to update targets for a specific category ('simulated' or 'real').
|
|
"""
|
|
if category == "simulated":
|
|
target_artists, trail_artists, label_artists = self.sim_target_artists, self.sim_trail_artists, self.sim_label_artists
|
|
trail_data, show_points, show_trail = self._trails["simulated"], self.show_sim_points_var.get(), self.show_sim_trail_var.get()
|
|
color, trail_color = "green", "limegreen"
|
|
else:
|
|
target_artists, trail_artists, label_artists = self.real_target_artists, self.real_trail_artists, self.real_label_artists
|
|
trail_data, show_points, show_trail = self._trails["real"], self.show_real_points_var.get(), self.show_real_trail_var.get()
|
|
color, trail_color = "red", "tomato"
|
|
|
|
for artist in target_artists + trail_artists + label_artists:
|
|
artist.remove()
|
|
target_artists.clear()
|
|
trail_artists.clear()
|
|
label_artists.clear()
|
|
|
|
if show_points or show_trail:
|
|
for t in new_data:
|
|
if t.active:
|
|
pos = (np.deg2rad(t.current_azimuth_deg), t.current_range_nm)
|
|
trail_data[t.target_id].append(pos)
|
|
|
|
if show_points:
|
|
active_targets = [t for t in new_data if t.active]
|
|
if active_targets:
|
|
self._draw_target_visuals(active_targets, color, target_artists, label_artists)
|
|
|
|
inactive_targets = [t for t in new_data if not t.active]
|
|
if inactive_targets and category == "simulated":
|
|
self._draw_inactive_markers(inactive_targets, color, target_artists, label_artists)
|
|
|
|
if show_trail:
|
|
self._draw_trails(trail_data, trail_color, trail_artists)
|
|
|
|
def _draw_inactive_markers(
|
|
self, targets: List[Target], color: str, artist_list: List, label_artist_list: List
|
|
):
|
|
for target in targets:
|
|
try:
|
|
r_nm = target.current_range_nm
|
|
theta_rad_plot = np.deg2rad(target.current_azimuth_deg)
|
|
(dot,) = self.ax.plot(theta_rad_plot, r_nm, "o", markersize=6, color=color, alpha=0.6)
|
|
artist_list.append(dot)
|
|
(x_mark,) = self.ax.plot(
|
|
theta_rad_plot, r_nm, marker="x", color="yellow",
|
|
markersize=8, markeredgewidth=0.9, linestyle=""
|
|
)
|
|
label_artist_list.append(x_mark)
|
|
except Exception:
|
|
pass
|
|
|
|
def _draw_target_visuals(
|
|
self, targets: List[Target], color: str, artist_list: List, label_artist_list: List
|
|
):
|
|
vector_len_nm = self.range_var.get() / 20.0
|
|
marker_size = 8 if color == "green" else 6
|
|
|
|
for target in targets:
|
|
r_nm = target.current_range_nm
|
|
theta_rad_plot = np.deg2rad(target.current_azimuth_deg)
|
|
|
|
(dot,) = self.ax.plot(theta_rad_plot, r_nm, "o", markersize=marker_size, color=color)
|
|
artist_list.append(dot)
|
|
|
|
heading_relative_to_north_rad = np.deg2rad(target.current_heading_deg)
|
|
|
|
x_start_rel_nm = r_nm * math.sin(theta_rad_plot)
|
|
y_start_rel_nm = r_nm * math.cos(theta_rad_plot)
|
|
|
|
dx_nm = vector_len_nm * math.sin(heading_relative_to_north_rad)
|
|
dy_nm = vector_len_nm * math.cos(heading_relative_to_north_rad)
|
|
|
|
x_end_rel_nm = x_start_rel_nm + dx_nm
|
|
y_end_rel_nm = y_start_rel_nm + dy_nm
|
|
|
|
r_end_nm = math.hypot(x_end_rel_nm, y_end_rel_nm)
|
|
theta_end_rad_plot = math.atan2(x_end_rel_nm, y_end_rel_nm)
|
|
|
|
(line,) = self.ax.plot(
|
|
[theta_rad_plot, theta_end_rad_plot], [r_nm, r_end_nm],
|
|
color=color, linewidth=1.2
|
|
)
|
|
artist_list.append(line)
|
|
|
|
txt = self.ax.text(
|
|
theta_rad_plot, r_nm + (vector_len_nm * 0.5), str(target.target_id),
|
|
color="white", fontsize=8, ha="center", va="bottom"
|
|
)
|
|
label_artist_list.append(txt)
|
|
|
|
def _draw_trails(self, trail_data: Dict, color: str, artist_list: List):
|
|
for trail in trail_data.values():
|
|
if len(trail) > 1:
|
|
thetas, rs = zip(*trail)
|
|
(line,) = self.ax.plot(thetas, rs, color=color, linestyle="-", linewidth=0.8, alpha=0.7)
|
|
artist_list.append(line)
|
|
|
|
def clear_trails(self):
|
|
self._trails["simulated"].clear()
|
|
self._trails["real"].clear()
|
|
self.clear_all_targets()
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def _update_scan_lines(self):
|
|
max_r = self.ax.get_ylim()[1]
|
|
limit_rad = np.deg2rad(self.scan_limit_deg)
|
|
self._scan_line_1.set_data([limit_rad, limit_rad], [0, max_r])
|
|
self._scan_line_2.set_data([-limit_rad, -limit_rad], [0, max_r])
|
|
if self._antenna_line_artist:
|
|
data = self._antenna_line_artist.get_data()
|
|
if data and len(data) == 2 and len(data[0]) >= 1:
|
|
theta = data[0][0]
|
|
self._antenna_line_artist.set_data([theta, theta], [0, max_r])
|
|
|
|
def _on_range_selected(self, event=None):
|
|
self.ax.set_ylim(0, self.range_var.get())
|
|
self._update_scan_lines()
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def _on_antenna_animate_changed(self):
|
|
st = self._antenna_state
|
|
enabled = self.animate_antenna_var.get()
|
|
if not enabled:
|
|
st["animating"] = False
|
|
if self._antenna_line_artist:
|
|
self._antenna_line_artist.set_visible(False)
|
|
else:
|
|
if self._antenna_line_artist:
|
|
self._antenna_line_artist.set_visible(True)
|
|
last_ts, next_ts = st.get("last_ts"), st.get("next_ts")
|
|
if last_ts is not None and next_ts is not None and next_ts > last_ts and not st.get("animating"):
|
|
st["animating"] = True
|
|
self.after(st.get("tick_ms", 33), self._antenna_animation_step)
|
|
|
|
if self.canvas:
|
|
self.canvas.draw_idle()
|
|
|
|
def clear_previews(self):
|
|
for artist in self.preview_artists:
|
|
artist.set_data([], [])
|
|
for arts in self.preview_path_artists.values():
|
|
for a in arts:
|
|
a.remove()
|
|
self.preview_path_artists.clear()
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def draw_scenario_preview(self, scenario):
|
|
self.clear_previews()
|
|
if scenario is None:
|
|
return
|
|
|
|
for target in scenario.get_all_targets():
|
|
try:
|
|
path, _ = Target.generate_path_from_waypoints(target.trajectory, target.use_spline)
|
|
if not path: continue
|
|
|
|
path_thetas, path_rs = [], []
|
|
for point in path:
|
|
x_ft, y_ft = point[1], point[2]
|
|
r_ft = math.hypot(x_ft, y_ft)
|
|
az_rad_plot = math.atan2(x_ft, y_ft)
|
|
path_rs.append(r_ft / NM_TO_FT)
|
|
path_thetas.append(az_rad_plot)
|
|
|
|
(line_art,) = self.ax.plot(
|
|
path_thetas, path_rs, color="limegreen", linestyle="--", linewidth=1.2, alpha=0.9
|
|
)
|
|
(start_art,) = self.ax.plot([path_thetas[0]], [path_rs[0]], "go", markersize=6)
|
|
self.preview_path_artists[target.target_id] = [line_art, start_art]
|
|
except Exception:
|
|
logger.exception("Failed to draw preview for target %s", getattr(target, "target_id", "?"))
|
|
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def update_antenna_azimuth(self, az_deg: float, timestamp: float = None):
|
|
try:
|
|
now = time.monotonic()
|
|
ts = float(timestamp) if timestamp is not None else now
|
|
az = float(az_deg) % 360
|
|
except Exception:
|
|
return
|
|
|
|
st = self._antenna_state
|
|
if not self.animate_antenna_var.get():
|
|
st.update({"last_az_deg": az, "last_ts": ts, "next_az_deg": az, "next_ts": ts, "animating": False})
|
|
if self._antenna_line_artist: self._antenna_line_artist.set_visible(False)
|
|
if self.canvas: self.canvas.draw_idle()
|
|
return
|
|
|
|
if st["last_az_deg"] is None or st["last_ts"] is None:
|
|
st.update({"last_az_deg": az, "last_ts": ts, "next_az_deg": az, "next_ts": ts})
|
|
self._render_antenna_line(az)
|
|
return
|
|
|
|
cur_az, cur_ts = st["last_az_deg"], st["last_ts"]
|
|
next_az, next_ts = st.get("next_az_deg"), st.get("next_ts")
|
|
|
|
if next_az is not None and next_ts is not None and next_ts > cur_ts:
|
|
frac = max(0.0, min(1.0, (now - cur_ts) / (next_ts - cur_ts)))
|
|
diff = ((next_az - cur_az + 180) % 360) - 180
|
|
cur_az = (cur_az + diff * frac) % 360
|
|
cur_ts = now
|
|
|
|
st.update({"last_az_deg": cur_az, "last_ts": cur_ts, "next_az_deg": az, "next_ts": ts})
|
|
|
|
if not st["animating"]:
|
|
st["animating"] = True
|
|
self.after(st["tick_ms"], self._antenna_animation_step)
|
|
|
|
def _antenna_animation_step(self):
|
|
st = self._antenna_state
|
|
if not self.animate_antenna_var.get():
|
|
st["animating"] = False
|
|
return
|
|
|
|
try:
|
|
last_ts, next_ts = st.get("last_ts"), st.get("next_ts")
|
|
last_az, next_az = st.get("last_az_deg"), st.get("next_az_deg")
|
|
now = time.monotonic()
|
|
|
|
if any(v is None for v in [last_az, next_az, last_ts, next_ts]):
|
|
st["animating"] = False
|
|
return
|
|
|
|
if next_ts <= last_ts:
|
|
cur = next_az
|
|
st["animating"] = False
|
|
else:
|
|
frac = max(0.0, min(1.0, (now - last_ts) / (next_ts - last_ts)))
|
|
diff = ((next_az - last_az + 180) % 360) - 180
|
|
cur = (last_az + diff * frac) % 360
|
|
if frac >= 1.0:
|
|
st["last_az_deg"], st["last_ts"] = next_az, next_ts
|
|
st["animating"] = False
|
|
|
|
self._render_antenna_line(cur)
|
|
except Exception:
|
|
st["animating"] = False
|
|
|
|
if st["animating"]:
|
|
self.after(st["tick_ms"], self._antenna_animation_step)
|
|
|
|
def _render_antenna_line(self, az_deg: float):
|
|
try:
|
|
theta = np.deg2rad(float(az_deg))
|
|
max_r = self.ax.get_ylim()[1]
|
|
if self._antenna_line_artist:
|
|
self._antenna_line_artist.set_visible(self.animate_antenna_var.get())
|
|
self._antenna_line_artist.set_data([theta, theta], [0, max_r])
|
|
if self.canvas:
|
|
self.canvas.draw_idle()
|
|
except Exception:
|
|
pass
|
|
|
|
def draw_trajectory_preview(self, waypoints: List[Waypoint], use_spline: bool):
|
|
self.clear_previews()
|
|
self.clear_trails()
|
|
if not waypoints or waypoints[0].maneuver_type != ManeuverType.FLY_TO_POINT:
|
|
return
|
|
|
|
path, _ = Target.generate_path_from_waypoints(waypoints, use_spline)
|
|
if not path:
|
|
return
|
|
|
|
path_thetas, path_rs = [], []
|
|
for point in path:
|
|
x_ft, y_ft = point[1], point[2]
|
|
r_ft = math.hypot(x_ft, y_ft)
|
|
az_rad_plot = math.atan2(x_ft, y_ft)
|
|
path_rs.append(r_ft / NM_TO_FT)
|
|
path_thetas.append(az_rad_plot)
|
|
|
|
self._path_plot.set_data(path_thetas, path_rs)
|
|
|
|
wp_thetas, wp_rs = [], []
|
|
for wp in waypoints:
|
|
if wp.maneuver_type == ManeuverType.FLY_TO_POINT:
|
|
r_nm = wp.target_range_nm or 0.0
|
|
az_rad_plot = np.deg2rad(wp.target_azimuth_deg or 0.0)
|
|
wp_rs.append(r_nm)
|
|
wp_thetas.append(az_rad_plot)
|
|
self._waypoints_plot.set_data(wp_thetas, wp_rs)
|
|
|
|
start_wp = waypoints[0]
|
|
start_r = start_wp.target_range_nm or 0.0
|
|
start_theta = np.deg2rad(start_wp.target_azimuth_deg or 0.0)
|
|
self._start_plot.set_data([start_theta], [start_r])
|
|
|
|
if self.canvas:
|
|
self.canvas.draw()
|
|
|
|
def reconfigure_radar(self, max_range_nm: int, scan_limit_deg: int):
|
|
self.max_range, self.scan_limit_deg = max_range_nm, scan_limit_deg
|
|
steps = [10, 20, 40, 80, 100, 160, 240, 320]
|
|
valid_steps = sorted([s for s in steps if s <= max_range_nm] + ([max_range_nm] if max_range_nm not in steps else []))
|
|
self.range_selector["values"] = valid_steps
|
|
if self.range_var.get() not in valid_steps:
|
|
self.range_var.set(max_range_nm)
|
|
self._on_range_selected() |