visualizzazione mappa corretta, controllare misure e rotazioni

This commit is contained in:
VALLONGOL 2025-04-08 13:27:49 +02:00
parent 1ee934505a
commit 03ff5ec672
4 changed files with 365 additions and 110 deletions

BIN
GitUlitity_icona.ico Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 MiB

View File

@ -150,7 +150,7 @@ MAP_SERVICE_PROVIDER = "osm" # Name of the service to use (must match map_servi
# MAP_API_KEY = None # Add this if using a service that requires a key (e.g., Google)
MAP_CACHE_DIRECTORY = "map_cache" # Root directory for cached tiles
ENABLE_ONLINE_MAP_FETCHING = True # Allow downloading tiles if not in cache
DEFAULT_MAP_ZOOM_LEVEL = 12 # Initial zoom level for the test map (adjust as needed)
DEFAULT_MAP_ZOOM_LEVEL = 14 # Initial zoom level for the test map (adjust as needed) 12 original, 13 little more big,
# Color for placeholder tiles when offline/download fails (RGB tuple)
OFFLINE_MAP_PLACEHOLDER_COLOR = (200, 200, 200) # Light grey
MAX_MAP_DISPLAY_WIDTH = 1024
@ -158,8 +158,12 @@ MAX_MAP_DISPLAY_HEIGHT = 1024
# SAR Georeferencing Defaults (Now explicitly used for map testing if ENABLE_MAP_OVERLAY is True)
SAR_CENTER_LAT = 40.7128 # Example: New York City Latitude (Degrees)
SAR_CENTER_LON = -74.0060 # Example: New York City Longitude (Degrees)
# SAR Georeferencing Defaults
# NOTE: Setting LAT/LON to 0.0 signals the MapIntegrationManager *NOT*
# to display an initial default map area on startup.
# The map will only appear after the first valid GeoInfo is received.
SAR_CENTER_LAT = 0.0 #40.7128 # Example: New York City Latitude (Degrees)
SAR_CENTER_LON = 0.0 #-74.0060 # Example: New York City Longitude (Degrees)
SAR_IMAGE_SIZE_KM = (
50.0 # Example: Width/Height of the area to show on the map in Kilometers
)

View File

@ -14,7 +14,7 @@ import logging
import threading
import queue # For type hinting
import math
from typing import Optional, Dict, Any, Tuple
from typing import Optional, Dict, Any, Tuple, List
# Third-party imports
import numpy as np
@ -31,6 +31,8 @@ try:
except ImportError:
pyproj = None
import cv2
# Local application imports
import config
from app_state import AppState
@ -145,75 +147,101 @@ class MapIntegrationManager:
def _display_initial_map_area_thread(self):
"""
(Runs in background thread) Calculates the initial map area based on default
config settings and queues the result for display on the main thread.
Moved from App._display_initial_map_area.
config settings and queues the result for display on the main thread,
*unless* the default coordinates in config are set to (0,0) which signals
to skip the initial display.
"""
log_prefix = f"{self._log_prefix} InitialMap"
# Check dependencies initialized in __init__
# Check if default lat/lon are set to 0.0 to prevent initial display
if config.SAR_CENTER_LAT == 0.0 and config.SAR_CENTER_LON == 0.0:
# ... (codice per saltare e aggiornare lo stato, come prima) ...
# ... (assicurati che questa parte sia corretta come nella risposta precedente) ...
logging.info(f"{log_prefix} Initial map display skipped based on config defaults (0,0). Waiting for valid GeoInfo.")
if not self._app_state.shutting_down:
status_msg = "Status Unavailable" # Default
try:
if self._app_state.test_mode_active:
status_msg = "Ready (Test Mode)"
elif config.USE_LOCAL_IMAGES:
status_msg = "Ready (Local Mode)"
else:
socket_ok = False
listening_info = "Error: No Network Socket"
if hasattr(self._app, 'udp_socket') and self._app.udp_socket:
if hasattr(self._app, 'local_ip') and hasattr(self._app, 'local_port'):
listening_info = f"Listening UDP {self._app.local_ip}:{self._app.local_port}"
socket_ok = True
else:
listening_info = "Listening UDP (IP/Port Unknown)"
socket_ok = True
status_msg = listening_info
status_msg += " | Map Ready (Waiting for GeoData)"
except Exception as e:
logging.exception(f"{log_prefix} Unexpected error determining status message:")
status_msg = "Error Getting Status | Map Ready (Waiting for GeoData)"
self._app.set_status(status_msg)
return # Esce dal thread
# Se le coordinate di default *non* sono (0,0), procedi
logging.info(f"{log_prefix} Calculating initial map area based on non-zero config defaults...")
# Check dependencies
if not (self._map_tile_manager and self._map_display_window):
# This check might be redundant if __init__ raises exceptions, but keep for safety
logging.error(f"{log_prefix} Map components not initialized. Aborting thread.")
# Queue None to signal failure to the main thread?
put_queue(self._tkinter_queue, ('SHOW_MAP', None), "tkinter", self._app)
return
# Check shutdown flag early
if self._app_state.shutting_down:
logging.info(f"{log_prefix} Shutdown detected. Aborting.")
return
logging.info(f"{log_prefix} Calculating initial map area...")
map_image_pil: Optional[Image.Image] = None
try:
# Use default center/size from config for the initial view
# --- MODIFICA QUI: Definisci 'zoom' PRIMA di usarlo ---
zoom = config.DEFAULT_MAP_ZOOM_LEVEL
logging.debug(f"{log_prefix} Using default zoom level: {zoom}")
# --- FINE MODIFICA ---
# Usa default center/size da config
bbox = get_bounding_box_from_center_size(
config.SAR_CENTER_LAT, config.SAR_CENTER_LON, config.SAR_IMAGE_SIZE_KM
)
if bbox is None:
raise MapCalculationError("Failed to calculate initial bounding box.")
zoom = config.DEFAULT_MAP_ZOOM_LEVEL
# Calcola i tile ranges USANDO la variabile zoom definita sopra
tile_ranges = get_tile_ranges_for_bbox(bbox, zoom)
if tile_ranges is None:
raise MapCalculationError("Failed to calculate initial tile ranges.")
# --- Check shutdown again before potentially long tile stitching ---
if self._app_state.shutting_down:
logging.info(f"{log_prefix} Shutdown detected before stitching.")
return
# Ora puoi usare 'zoom' nel messaggio di log
logging.info(f"{log_prefix} Stitching initial map tiles (Zoom: {zoom}, X: {tile_ranges[0]}, Y: {tile_ranges[1]})...")
map_image_pil = self._map_tile_manager.stitch_map_image(
zoom, tile_ranges[0], tile_ranges[1]
) # stitch_map_image uses placeholders internally if needed
)
# --- Check shutdown again after stitching ---
if self._app_state.shutting_down:
logging.info(f"{log_prefix} Shutdown detected after stitching.")
# Don't queue result if shutting down
return
if map_image_pil:
logging.info(f"{log_prefix} Initial map area stitched successfully.")
else:
# This case should be less likely if stitch_map_image uses placeholders
logging.error(f"{log_prefix} Failed to stitch initial map area (returned None even with placeholders).")
logging.error(f"{log_prefix} Failed to stitch initial map area.")
except ImportError as e:
# Should be caught by __init__, but handle defensively
logging.critical(f"{log_prefix} Missing library during map calculation: {e}")
map_image_pil = None # Ensure None is queued on error
except MapCalculationError as e:
except (ImportError, MapCalculationError) as e:
logging.error(f"{log_prefix} Calculation error: {e}")
map_image_pil = None # Ensure None is queued on error
map_image_pil = None
except Exception as e:
logging.exception(f"{log_prefix} Unexpected error calculating initial map:")
map_image_pil = None # Ensure None is queued on error
map_image_pil = None
finally:
# Always queue the result (PIL image or None) for the main thread to handle display
# Check shutdown one last time before queueing
if not self._app_state.shutting_down:
logging.debug(f"{log_prefix} Queueing SHOW_MAP command for main thread.")
# The payload is the PIL image (or None)
logging.debug(f"{log_prefix} Queueing SHOW_MAP command for initial map.")
put_queue(self._tkinter_queue, ('SHOW_MAP', map_image_pil), "tkinter", self._app)
logging.debug(f"{log_prefix} Initial map display thread finished.")
@ -276,8 +304,12 @@ class MapIntegrationManager:
# Calculate size in KM, using default from config as fallback
if scale_x > 0 and width_px > 0:
size_km = (scale_x * width_px) / 1000.0
logging.info(f"{log_prefix} Calculated approximate size based on scale_x * width_px: {size_km:.2f} km")
else:
logging.warning(f"{log_prefix} Using default SAR size for map due to invalid scale/width in GeoInfo.")
logging.error(
f"{log_prefix} Invalid scale_x ({scale_x}) or width_px ({width_px}) in received GeoInfo. "
f"Cannot determine map size from data. Using fallback default size: {config.SAR_IMAGE_SIZE_KM} km."
)
size_km = config.SAR_IMAGE_SIZE_KM
# Get zoom level from config
zoom = config.DEFAULT_MAP_ZOOM_LEVEL
@ -433,5 +465,222 @@ class MapIntegrationManager:
logging.info(f"{log_prefix} Map integration shutdown complete.")
def _calculate_sar_corners_geo(
self, geo_info: Dict[str, Any]
) -> Optional[List[Tuple[float, float]]]:
"""
Calculates the geographic coordinates (latitude, longitude in degrees)
of the four corners of the SAR image based on its georeferencing info.
Args:
geo_info (Dict[str, Any]): The georeferencing dictionary from AppState.
Expects keys like 'lat', 'lon', 'orientation' (radians),
'ref_x', 'ref_y', 'scale_x', 'scale_y', 'width_px', 'height_px'.
Returns:
Optional[List[Tuple[float, float]]]: A list of four (lon, lat) tuples in degrees
representing the corners (e.g., TL, TR, BR, BL),
or None on error.
"""
log_prefix = f"{self._log_prefix} SAR Corners Geo"
logging.debug(f"{log_prefix} Calculating SAR corner geographic coordinates...")
if not self._geod:
logging.error(f"{log_prefix} Geodetic calculator (pyproj.Geod) not initialized.")
return None
try:
# Extract necessary info (ensure keys exist and values are valid)
center_lat_rad = geo_info['lat']
center_lon_rad = geo_info['lon']
orient_rad = geo_info['orientation']
ref_x = geo_info['ref_x']
ref_y = geo_info['ref_y']
scale_x = geo_info['scale_x'] # meters/pixel
scale_y = geo_info['scale_y'] # meters/pixel
width = geo_info['width_px']
height = geo_info['height_px']
if not (scale_x > 0 and scale_y > 0 and width > 0 and height > 0):
logging.error(f"{log_prefix} Invalid scale or dimensions in geo_info.")
return None
# 1. Calculate pixel coordinates of corners relative to the reference pixel (ref_x, ref_y)
# Origin (0,0) is top-left. Y increases downwards in pixel space.
corners_pixel = [
(0 - ref_x, ref_y - 0), # Top-Left (dx, dy relative to ref, y inverted)
(width - 1 - ref_x, ref_y - 0), # Top-Right
(width - 1 - ref_x, ref_y - (height - 1)), # Bottom-Right
(0 - ref_x, ref_y - (height - 1)) # Bottom-Left
]
# 2. Convert pixel offsets to meter offsets
corners_meters = [
(dx * scale_x, dy * scale_y) for dx, dy in corners_pixel
] # (delta_meters_east, delta_meters_north)
# 3. Apply inverse rotation to meter offsets if necessary
# The map needs the *geographic* corners, so we need to find where
# the image corners land geographically. We start from the geo center
# and calculate the destination point by applying the *rotated* meter offsets.
corners_meters_rotated = []
if abs(orient_rad) > 1e-6: # Apply rotation if significant
cos_o = math.cos(orient_rad)
sin_o = math.sin(orient_rad)
for dx_m, dy_m in corners_meters:
# Rotate the offset vector (dx_m, dy_m) by orient_rad
rot_dx = dx_m * cos_o - dy_m * sin_o
rot_dy = dx_m * sin_o + dy_m * cos_o
corners_meters_rotated.append((rot_dx, rot_dy))
logging.debug(f"{log_prefix} Applied rotation ({math.degrees(orient_rad):.2f} deg) to meter offsets.")
else:
corners_meters_rotated = corners_meters # No rotation needed
logging.debug(f"{log_prefix} Skipping rotation for meter offsets (angle near zero).")
# 4. Calculate geographic coordinates of corners using pyproj.Geod.fwd
# This requires calculating distance and azimuth from the center to each rotated meter offset.
sar_corners_geo_deg = []
for dx_m_rot, dy_m_rot in corners_meters_rotated:
# Calculate distance from center (0,0) in rotated meter space
distance_m = math.sqrt(dx_m_rot**2 + dy_m_rot**2)
# Calculate azimuth from center (North=0, East=90)
# atan2(dx, dy) gives angle relative to North axis
azimuth_rad = math.atan2(dx_m_rot, dy_m_rot)
azimuth_deg = math.degrees(azimuth_rad)
# Use geod.fwd from the known center lat/lon (radians needed for input?)
# pyproj fwd expects degrees for lon, lat, az
center_lon_deg = math.degrees(center_lon_rad)
center_lat_deg = math.degrees(center_lat_rad)
# Calculate the destination point
endlon, endlat, _ = self._geod.fwd(center_lon_deg, center_lat_deg, azimuth_deg, distance_m)
# Append (lon, lat) tuple in degrees
sar_corners_geo_deg.append((endlon, endlat))
logging.debug(f"{log_prefix} Calculated corner: Dist={distance_m:.1f}m, Az={azimuth_deg:.2f}deg -> Lon={endlon:.6f}, Lat={endlat:.6f}")
if len(sar_corners_geo_deg) != 4:
logging.error(f"{log_prefix} Failed to calculate all 4 corner coordinates.")
return None
logging.info(f"{log_prefix} Successfully calculated 4 SAR corner geographic coordinates.")
return sar_corners_geo_deg
except KeyError as ke:
logging.error(f"{log_prefix} Missing required key in geo_info: {ke}")
return None
except Exception as e:
logging.exception(f"{log_prefix} Error calculating SAR corner coordinates:")
return None
# --- NUOVA FUNZIONE HELPER (SCHELETRO/PLACEHOLDER) ---
def _geo_coords_to_map_pixels(
self,
coords_deg: List[Tuple[float, float]],
map_bounds: mercantile.LngLatBbox,
map_tile_ranges: Tuple[Tuple[int, int], Tuple[int, int]],
zoom: int,
stitched_map_shape: Tuple[int, int] # (height, width)
) -> Optional[List[Tuple[int, int]]]:
"""
Converts a list of geographic coordinates (lon, lat degrees) to pixel
coordinates (x, y) relative to the top-left corner of the stitched map image.
Args:
coords_deg (List[Tuple[float, float]]): List of (longitude, latitude) tuples in degrees.
map_bounds (mercantile.LngLatBbox): Geographic bounds of the *top-left tile* used for stitching.
Used as the reference for pixel conversion.
map_tile_ranges (Tuple[Tuple[int, int], Tuple[int, int]]): ((min_x, max_x), (min_y, max_y)) tile indices.
zoom (int): The zoom level of the map tiles.
stitched_map_shape (Tuple[int, int]): The shape (height, width) of the stitched map image in pixels.
Returns:
Optional[List[Tuple[int, int]]]: List of (x, y) pixel coordinates corresponding
to the input geographic coordinates, relative to the
top-left of the stitched map image. Returns None on error.
"""
log_prefix = f"{self._log_prefix} Geo to Pixel"
logging.debug(f"{log_prefix} Converting {len(coords_deg)} geo coordinates to map pixels...")
if mercantile is None:
logging.error(f"{log_prefix} Mercantile library not available.")
return None
if not stitched_map_shape or stitched_map_shape[0] <= 0 or stitched_map_shape[1] <= 0:
logging.error(f"{log_prefix} Invalid stitched map shape: {stitched_map_shape}")
return None
pixel_coords = []
map_height_px, map_width_px = stitched_map_shape
# Tile size from config or service? Assume 256 for mercantile functions
tile_size = self._map_service.tile_size if self._map_service else 256
try:
# Get the coordinates of the top-left corner of the entire stitched map in the world pixel space (at the given zoom)
# This is the top-left corner of the top-left tile (min_x, min_y)
min_tile_x = map_tile_ranges[0][0]
min_tile_y = map_tile_ranges[1][0]
# mercantile.xy_bounds(tile) gives bounds in projected meters, not pixels
# We need the pixel coordinates using mercantile.xy() perhaps?
# Let's try converting each geographic point to its world pixel coordinate at the given zoom
# and then find its position relative to the top-left corner of our stitched map area.
# Calculate the world pixel coordinate (at zoom level) of the top-left corner of our stitched map area
# This corresponds to the top-left of tile (min_tile_x, min_tile_y)
tl_tile_bounds = mercantile.xy_bounds(min_tile_x, min_tile_y, zoom)
# mercantile.xy() converts lon/lat to projected meters (Web Mercator)
# We need a function to convert lon/lat directly to *tile pixel coordinates* or *world pixel coordinates*
# mercantile doesn't seem to offer this directly. We might need to implement the math:
# https://developers.google.com/maps/documentation/javascript/examples/map-coordinates
# --- Alternative Approach using mercantile.xy and relating to tile bounds ---
# 1. Find the projected meter coordinates (Web Mercator) of the top-left corner of the stitched area.
tl_tile_mercator_bounds = mercantile.xy_bounds(min_tile_x, min_tile_y, zoom)
map_origin_x_mercator = tl_tile_mercator_bounds.left
map_origin_y_mercator = tl_tile_mercator_bounds.top # Top has higher Y in Mercator
# 2. Calculate the total span of the stitched map in Mercator meters
max_tile_x = map_tile_ranges[0][1]
max_tile_y = map_tile_ranges[1][1]
br_tile_mercator_bounds = mercantile.xy_bounds(max_tile_x, max_tile_y, zoom)
map_total_width_mercator = br_tile_mercator_bounds.right - map_origin_x_mercator
map_total_height_mercator = map_origin_y_mercator - br_tile_mercator_bounds.bottom # Top Y > Bottom Y
if map_total_width_mercator <= 0 or map_total_height_mercator <=0:
logging.error(f"{log_prefix} Invalid map span in Mercator coordinates calculated.")
return None
# 3. For each input geographic coordinate:
for lon, lat in coords_deg:
# a. Convert geo coord to Mercator meters
point_x_mercator, point_y_mercator = mercantile.xy(lon, lat)
# b. Calculate the coordinate relative to the map's top-left origin in Mercator meters
relative_x_mercator = point_x_mercator - map_origin_x_mercator
relative_y_mercator = map_origin_y_mercator - point_y_mercator # Invert Y difference
# c. Scale the relative Mercator coordinates to pixel coordinates based on the total map span and pixel dimensions
pixel_x = int(round((relative_x_mercator / map_total_width_mercator) * map_width_px))
pixel_y = int(round((relative_y_mercator / map_total_height_mercator) * map_height_px))
# Clamp pixel coordinates to be within the stitched map bounds
pixel_x_clamped = max(0, min(pixel_x, map_width_px - 1))
pixel_y_clamped = max(0, min(pixel_y, map_height_px - 1))
if pixel_x != pixel_x_clamped or pixel_y != pixel_y_clamped:
logging.warning(f"{log_prefix} Clamped pixel coords for ({lon:.4f},{lat:.4f}): ({pixel_x},{pixel_y}) -> ({pixel_x_clamped},{pixel_y_clamped})")
pixel_coords.append((pixel_x_clamped, pixel_y_clamped))
logging.debug(f"{log_prefix} Converted ({lon:.4f},{lat:.4f}) -> MercatorRel({relative_x_mercator:.1f},{relative_y_mercator:.1f}) -> Pixel({pixel_x_clamped},{pixel_y_clamped})")
logging.info(f"{log_prefix} Successfully converted {len(pixel_coords)} coordinates to map pixels.")
return pixel_coords
except Exception as e:
logging.exception(f"{log_prefix} Error converting geo coordinates to map pixels:")
return None
# --- END OF FILE map_integration.py ---

View File

@ -644,7 +644,8 @@ class UdpReceiver:
def reassemble_sar_image(self, image_leader, image_data, log_prefix):
"""
Extracts SAR metadata and pixel data (normalized uint8) from buffer.
Handles corrected radian interpretation for orientation.
Interprets ORIENTATION, LATITUDE, and LONGITUDE as RADIANS directly from the buffer
based on TN-IMGSER specification.
Args:
image_leader (ImageLeaderData): Parsed leader structure.
@ -660,7 +661,7 @@ class UdpReceiver:
image_key_log = f"SAR(FCNT={fcounter})" # For specific logs within this func
try:
# 1. Extract and validate HeaderData - DEBUG for details
# 1. Extract and validate HeaderData
hdr_d = image_leader.HEADER_DATA
dx, dy, bpp = int(hdr_d.DX), int(hdr_d.DY), int(hdr_d.BPP)
stride_pixels, pal_type = int(hdr_d.STRIDE), int(hdr_d.PALTYPE)
@ -674,7 +675,6 @@ class UdpReceiver:
or stride_pixels < dx
or pal_type != 0
):
# ERROR for invalid metadata
logging.error(
f"{log_prefix} {image_key_log}: Invalid SAR metadata. Cannot reassemble."
)
@ -683,21 +683,18 @@ class UdpReceiver:
pixel_dtype = np.uint8 if bpp == 1 else np.uint16
pixel_bytes = bpp
# 2. Calculate pixel offset - DEBUG for offset calc
pixel_data_offset = self._calculate_pixel_data_offset(
image_leader
) # Logs internally
# 2. Calculate pixel offset
pixel_data_offset = self._calculate_pixel_data_offset(image_leader)
logging.debug(
f"{log_prefix} {image_key_log}: Using pixel data offset: {pixel_data_offset}"
)
# 3. Validate offset and buffer size - DEBUG for validation steps
# 3. Validate offset and buffer size
available_data_length = len(image_data)
logging.debug(
f"{log_prefix} {image_key_log}: Validating offset ({pixel_data_offset}) vs buffer size ({available_data_length})."
)
if pixel_data_offset >= available_data_length:
# ERROR if offset invalid
logging.error(
f"{log_prefix} {image_key_log}: Pixel offset >= buffer size. Cannot extract pixel data."
)
@ -705,14 +702,13 @@ class UdpReceiver:
minimum_required_core_bytes = dy * dx * pixel_bytes
actual_pixel_bytes_available = available_data_length - pixel_data_offset
if actual_pixel_bytes_available < minimum_required_core_bytes:
# ERROR if insufficient data
logging.error(
f"{log_prefix} {image_key_log}: Insufficient pixel data in buffer (Need min {minimum_required_core_bytes}, Found {actual_pixel_bytes_available})."
)
return None
logging.debug(f"{log_prefix} {image_key_log}: Buffer size validated.")
# 4. Create NumPy view - DEBUG for view creation attempt
# 4. Create NumPy view
try:
stride_bytes = stride_pixels * pixel_bytes
logging.debug(
@ -729,7 +725,6 @@ class UdpReceiver:
f"{log_prefix} {image_key_log}: NumPy view created successfully."
)
except ValueError as ve:
# ERROR for view creation failure
logging.error(
f"{log_prefix} {image_key_log}: Failed to create SAR NumPy view (Shape/stride/offset mismatch?): {ve}"
)
@ -742,15 +737,14 @@ class UdpReceiver:
)
return None
# 6. Normalize image view to uint8 - DEBUG for normalization step
# 6. Normalize image view to uint8
logging.debug(
f"{log_prefix} {image_key_log}: Normalizing SAR view to uint8..."
)
normalized_image_uint8 = normalize_image(
sar_image_view, target_type=np.uint8
) # Logs internally
)
if normalized_image_uint8 is None:
# ERROR for normalization failure
logging.error(
f"{log_prefix} {image_key_log}: SAR normalization to uint8 failed."
)
@ -759,27 +753,26 @@ class UdpReceiver:
f"{log_prefix} {image_key_log}: Normalization complete (Shape: {normalized_image_uint8.shape})."
)
# 7. Extract and Convert Geo Info (RADIANS) - Use specific prefix
# --- MODIFICATION START: Correct reading of GeoData fields as Radians ---
# 7. Extract and Validate Geo Info (RADIANS)
geo_log_prefix = "[Geo extract]"
geo_info_radians = {"valid": False}
geo_info_radians = {"valid": False} # Initialize as invalid
try:
geo_d = image_leader.GEO_DATA
logging.debug(
f"{geo_log_prefix} {image_key_log}: Extracting and interpreting GeoData (Orientation as RADIANS)..."
f"{geo_log_prefix} {image_key_log}: Extracting GeoData (interpreting ORIENTATION, LATITUDE, LONGITUDE as RADIANS)..."
)
# Read orientation directly as RADIANS (corrected)
orient_rad_raw = float(geo_d.ORIENTATION)
# Read lat/lon as DEGREES (from structure assumption) and convert
lat_deg_raw = float(geo_d.LATITUDE)
lon_deg_raw = float(geo_d.LONGITUDE)
lat_rad = math.radians(lat_deg_raw)
lon_rad = math.radians(lon_deg_raw)
# Read ORIENTATION, LATITUDE, LONGITUDE directly as RADIANS
# (Assuming they are stored as float representing radians in the buffer)
lat_rad = float(geo_d.LATITUDE)
lon_rad = float(geo_d.LONGITUDE)
orient_rad = float(geo_d.ORIENTATION)
# Store RADIANS internally
# Store RADIANS directly in the dictionary
geo_info_radians["lat"] = lat_rad
geo_info_radians["lon"] = lon_rad
geo_info_radians["orientation"] = orient_rad_raw
geo_info_radians["orientation"] = orient_rad
geo_info_radians["ref_x"] = int(geo_d.REF_X)
geo_info_radians["ref_y"] = int(geo_d.REF_Y)
geo_info_radians["scale_x"] = float(geo_d.SCALE_X)
@ -787,45 +780,54 @@ class UdpReceiver:
geo_info_radians["width_px"] = dx
geo_info_radians["height_px"] = dy
# Validate scale - DEBUG for validation result
if geo_info_radians["scale_x"] > 0 and geo_info_radians["scale_y"] > 0:
# Validate scale and basic lat/lon/orient ranges (radians)
# Basic range check: lat [-pi/2, pi/2], lon [-pi, pi]
is_scale_valid = (
geo_info_radians["scale_x"] > 0 and geo_info_radians["scale_y"] > 0
)
is_lat_valid = -math.pi / 2 <= lat_rad <= math.pi / 2
is_lon_valid = -math.pi <= lon_rad <= math.pi
# Orientation check can be less strict, maybe check finite?
is_orient_valid = math.isfinite(orient_rad)
if is_scale_valid and is_lat_valid and is_lon_valid and is_orient_valid:
geo_info_radians["valid"] = True
# Log extracted values (DEBUG controlled by DEBUG_RECEIVER_GEO)
orient_deg_for_log = math.degrees(orient_rad_raw)
# Log extracted values (convert to degrees *only for logging* if needed)
lat_deg_log = math.degrees(lat_rad)
lon_deg_log = math.degrees(lon_rad)
orient_deg_log = math.degrees(orient_rad)
logging.debug(
f"{geo_log_prefix} {image_key_log}: GeoInfo Extracted: Valid={geo_info_radians['valid']}, "
f"Lat={lat_deg_raw:.4f}deg({lat_rad:.6f}rad), Lon={lon_deg_raw:.4f}deg({lon_rad:.6f}rad), "
f"Orient={orient_deg_for_log:.2f}deg({orient_rad_raw:.6f}rad), "
f"Lat={lat_deg_log:.4f}deg({lat_rad:.6f}rad), Lon={lon_deg_log:.4f}deg({lon_rad:.6f}rad), "
f"Orient={orient_deg_log:.2f}deg({orient_rad:.6f}rad), "
f"Ref=({geo_info_radians['ref_x']},{geo_info_radians['ref_y']}), "
f"Scale=({geo_info_radians['scale_x']:.3f},{geo_info_radians['scale_y']:.3f}), "
f"Size=({dx},{dy})"
)
else:
# WARNING for invalid scale marking Geo invalid
logging.warning(
f"{geo_log_prefix} {image_key_log}: Invalid scale values found (ScaleX={geo_info_radians['scale_x']}, ScaleY={geo_info_radians['scale_y']}). GeoInfo marked invalid."
f"{geo_log_prefix} {image_key_log}: Invalid geo values found (ScaleValid={is_scale_valid}, LatValid={is_lat_valid}, LonValid={is_lon_valid}, OrientValid={is_orient_valid}). GeoInfo marked invalid."
)
geo_info_radians["valid"] = False
geo_info_radians["valid"] = False # Ensure marked invalid
except OverflowError as oe:
# ERROR for math errors
logging.error(
f"{geo_log_prefix} {image_key_log}: Math OverflowError during GeoData conversion: {oe}. GeoInfo marked invalid."
)
geo_info_radians = {"valid": False}
except Exception as e:
# Keep EXCEPTION for other geo errors
logging.exception(
f"{geo_log_prefix} {image_key_log}: Failed during GeoData extraction/conversion: {e}"
)
geo_info_radians = {"valid": False}
# --- MODIFICATION END ---
# 8. Return results - DEBUG for successful exit
# 8. Return results
logging.debug(f"{log_prefix} Exiting reassemble_sar_image successfully.")
# Return a *copy* of the normalized image and the geo info dict
return normalized_image_uint8.copy(), geo_info_radians
except Exception as e:
# Keep EXCEPTION for unexpected errors in reassembly
logging.exception(
f"{log_prefix} {image_key_log}: Unexpected error during SAR reassembly: {e}"
)