
Cpp-Python GDB Debug Helper - User Manual
Table of Contents

1. Introduction
2. System Requirements & Setup
3. Installation and Execution
4. File and Directory Structure
5. Quick Start Guide
6. User Interface Overview
7. Configuration Window (Options > Configure Application...)
8. Manual Debug Mode in Detail
9. Profile Manager & Automated Execution
10. Troubleshooting / FAQ
11. Use Cases / Examples
12. Advanced: The gdb_dumper.py Script
13. Appendix: Filename Placeholders

1. Introduction

1.1 What is Cpp-Python GDB Debug Helper?

The Cpp-Python GDB Debug Helper is a Graphical User Interface (GUI) designed to enhance and simplify the process of debugging
C/C++ applications using the GNU Debugger (GDB). It aims to provide a more user-friendly experience compared to the GDB command-
line interface, especially for tasks like inspecting complex data structures and automating repetitive debugging scenarios.

1.2 Who is it for?

This tool is primarily aimed at C/C++ developers who use GDB for debugging and would benefit from:

A visual interface for common GDB operations.
Easier inspection of complex C++ data types (structs, classes, STL containers).
Automation of debugging sequences through configurable profiles.
Structured output of variable dumps in JSON or CSV formats.

1.3 Key Features

Interactive Manual Debugging: Start GDB, set breakpoints, run your target program, and inspect variables.
Advanced Variable Dumping: Utilizes a custom GDB Python script to dump the state of C/C++ variables, including complex data
structures like classes, structs, pointers, arrays, and std::string, into a structured JSON format.
Automated Debug Profiles: Create, manage, and execute debug profiles. Each profile can define:

Target executable and program parameters.
Multiple debug "actions", each specifying a breakpoint, variables to dump, final output format (JSON/CSV), output
directory, and filename patterns.

Symbol Analysis: Analyze your compiled executable to extract information about functions, global variables, user-defined types,
and source files. This data aids in configuring debug actions.
Live Scope Inspection: When configuring an action, the tool can query GDB live to list variables (locals and arguments) available
at a specified breakpoint, allowing for precise selection.
Configurable Environment: Set paths for GDB, the custom Python dumper script, and various timeouts for GDB operations.
Flexible Output: Save dumped data in JSON or CSV formats with customizable filenames using placeholders for better
organization.
GUI Logging: View application logs and raw GDB output directly within the interface.

2. System Requirements & Setup

2.1 Supported Operating Systems

Windows (Primary): The application is primarily developed and tested on Windows. It uses the pexpect library's Windows-
compatible backend (PopenSpawn) for robust process control.
Linux/macOS (Experimental): The application should be compatible with Unix-like systems as pexpect is cross-platform.

2.2 Python

Python 3.7 or newer is recommended.

2.3 Required Python Libraries

You will need to install the following Python libraries. You can install them using pip: pip install pexpect appdirs

pexpect: For controlling GDB as a child process.
appdirs: Used for determining platform-independent user configuration and data directories (though the primary configuration is
now stored relative to the application).
Tkinter: This is included with standard Python installations and is used for the GUI.

2.4 GDB Installation

A working installation of the GNU Debugger (GDB) is required.
Ensure that GDB is either added to your system's PATH environment variable or you provide the full path to the GDB executable in
the application's configuration.
GDB versions 8.x and newer are recommended for the best Python scripting support.

2.5 Compiling Your C/C++ Target Application

Your C/C++ application must be compiled with debugging symbols.
For GCC/G++ or Clang, use the -g flag: g++ -g -o myprogram myprogram.cpp.
Avoid high levels of optimization (e.g., -O2, -O3) if they interfere with debugging. Consider using -Og (optimize for the debug
experience).

3. Installation and Execution

3.1 Running from Source Code

1. Ensure all prerequisites from Section 2 are met.
2. Download or clone the source code repository.
3. Navigate to the root directory of the project (cpp_python_debug).
4. Run the main script as a module: python -m cpp_python_debug

3.2 Running the Compiled (--onedir) Version

The application can be packaged into a distribution folder using PyInstaller.

1. Unzip or copy the distribution folder (e.g., cpp_python_debug) to your desired location. This folder is self-contained.
2. Inside the folder, find and run the main executable (e.g., cpp_python_debug.exe).
3. All files generated by the application (configurations, logs, dumps) will be created inside this folder, making it fully portable.

4. File and Directory Structure

The application creates and manages several files and directories. Understanding this structure is key to finding your configurations
and output.

When running from source: All paths are relative to the project's root directory.

When running the compiled version: All paths are relative to the folder containing the main executable.

config/

gdb_debug_gui_settings.v2.json: The main configuration file. It stores all your settings, including paths, timeouts, and all
your debug profiles. This file is in JSON format.
logs/
cpppythondebughelper_gui.log: The main log file for the GUI application itself. Useful for troubleshooting GUI issues.
gdb_dumper_script_internal.log: A dedicated log file for the gdb_dumper.py script. This is extremely useful for debugging
issues that occur inside GDB during a variable dump.
manual_gdb_dumps/: The directory where temporary dump files (.gdbdump.json) from the "Manual Debug" tab are stored
before you save them to a final location.
gdb_dumper_diagnostics/: (Optional) If you enable "Enable Diagnostic JSON Dump to File" in the settings, this folder will
contain a raw JSON copy of every single variable dump, which is useful for debugging the dumper script itself.
<Profile Output Directory>: The directory you specify in a profile's action is where the final dump files (JSON or CSV) for
that profile run will be saved. The application will create a run-specific subfolder here (e.g.,
MyDumps/MyProfile_20231027_143000/).

5. Quick Start Guide

1. Launch the Application as described in Section 3.
2. Initial Configuration: On first launch, go to Options > Configure Application....

In the Paths & Directories tab, browse to your GDB executable.
(Strongly Recommended) Also browse to the gdb_dumper.py script located in the core subdirectory of the source code (or
cpp_python_debug/core in the compiled version).
Click Save.

3. Your First Manual Debug Session:
Go to the Manual Debug tab.
Select your compiled C/C++ executable.
Enter a breakpoint (e.g., main).
Click 1. Start GDB.
Click 2. Set Breakpoint.
Click 3. Run Program.
When the breakpoint is hit, enter a variable name and click 4. Dump Variable.
Observe the "Parsed JSON/Status Output" tab. It will show a status message confirming the dump and the path to a
temporary .gdbdump.json file.
The Save as JSON and Save as CSV buttons will become active. Use them to save the captured data to a permanent
location.

6. User Interface Overview

6.1 Menu Bar

Options: "Configure Application...", "Exit".
Profiles: "Manage Profiles...".

6.2 Critical Configuration Status Area

Displays status of GDB executable and Dumper script. Includes a "Configure..." button.

6.3 Mode Panel (Tabs)

Manual Debug Tab: For interactive, step-by-step debugging.
Automated Profile Execution Tab: For running pre-configured debug sequences.

6.4 Output and Log Area (Tabs)

GDB Raw Output Tab: Raw text communication with the GDB process.
Parsed JSON/Status Output Tab: Displays the status payload received from the GDB dumper script or pretty-prints simple JSON.
Application Log Tab: Log messages from the GUI application itself.

6.5 Status Bar

Brief messages about the application's current state or last operation.

7. Configuration Window (Options > Configure Application...)

Organized into tabs:

7.1 Paths & Directories Tab

GDB Executable Path: Full path to GDB. Crucial.
GDB Python Dumper Script Path: Full path to gdb_dumper.py. Strongly recommended for full functionality.

7.2 Timeouts Tab (seconds)

Configure timeouts for GDB operations: GDB Start, GDB Command, Program Run/Continue, Dump Variable, Kill Program, GDB Quit.

7.3 Dumper Options Tab

Control the behavior of gdb_dumper.py: Max Array Elements, Max Recursion Depth, Max String Length, and options for diagnostic
logging.

8. Manual Debug Mode in Detail

This mode provides a step-by-step interface for a single debug session.

8.1 Workflow 1. Set Target & Parameters: Specify the executable and any command-line arguments. 2. Set Breakpoint & Variable:
Define where to stop and what to inspect. 3. Control Session: Use the numbered buttons (1. Start GDB, 2. Set Breakpoint, 3.
Run Program, 4. Dump Variable, Stop GDB) to control the flow. 4. Dump Data: The "Dump Variable" action saves the variable's
state to a temporary .gdbdump.json file. 5. Save Data: After a successful dump, the "Save as..." buttons become active, allowing you
to save the captured data permanently as JSON or CSV.

8.2 Interpreting Output * GDB Raw Output: Shows all communication with GDB, including the status message from the dumper
script. * Parsed JSON/Status Output: Displays the status payload from the dumper, confirming the action and providing the path to
the temporary file.

9. Profile Manager & Automated Execution

This is the core feature for automating debugging.

9.1 Profile Manager (Profiles > Manage Profiles...)

This window is the hub for creating and managing your automated debug scenarios. A profile consists of: 1. Profile Details: Name,
target executable, and program parameters. 2. Symbol Analysis Data: You can run an analysis on the target executable. The tool uses
GDB to find all functions, global variables, etc., and stores this information in the profile. This helps you accurately set up actions. 3.
Actions: A list of debug actions.

9.2 Action Editor

Each action defines a specific task to be performed at a breakpoint. * Breakpoint Location: Where GDB should stop. * Variables to

Dump: Which variables to inspect. * Output Format: Final format (JSON or CSV). * Output Directory: The base directory for the
output files. * Filename Pattern: A template for naming the output files. * Execution Flow: Whether to continue after the dump and
whether to dump on every hit or just the first.

9.3 Automated Execution Flow

1. Select a profile from the dropdown on the "Automated Profile Execution" tab.
2. Click Run Profile.
3. The ProfileExecutor starts GDB and runs the program.
4. When a breakpoint is hit, the corresponding action is triggered.
5. The gdb_dumper.py script is invoked, which dumps the specified variable(s) to intermediate .gdbdump.json files.
6. The main application then processes these intermediate files:

If the desired format is JSON, it renames the file according to the pattern.
If the desired format is CSV, it reads the JSON, converts it, saves the new .csv file, and deletes the intermediate JSON.

7. The "Produced Files Log" is updated in real-time with the status of each file created.

10. Troubleshooting / FAQ

Q: GDB not found / Dumper script issues / No debugging symbols. A: Ensure your configured paths in Options > Configure
Application... are correct. Check the Application Log and GDB Raw Output tabs for specific error messages from GDB or the dumper
script.

Q: The application hangs or times out. A: Your target program might be taking a long time. Try increasing the timeouts in the
Configuration Window.

Q: How can I get more debug information from gdb_dumper.py? A: 1. Check the logs/gdb_dumper_script_internal.log file.
This is the first place to look for errors happening inside the dumper. 2. For even more detail, enable "Enable Diagnostic JSON Dump
to File" in the Dumper Options. This saves a raw JSON copy of every dump to the logs/gdb_dumper_diagnostics/ directory, allowing
you to see exactly what the dumper is producing.

11. Use Cases / Examples

11.1 Dumping a std::vector

Scenario: You want to inspect the contents of a std::vector<MyObject> myVector every time it's modified inside a
processVector function.
Profile Setup:

Action 1: Breakpoint at the start of processVector.
Action 2: Breakpoint at the end of processVector.
Both actions dump the myVector variable.

Result: When the profile runs, files like vector_dumps/MyProfile_timestamp/processVector_myVector_timestamp.json (or
.csv) will be created, allowing you to see the state of the vector before and after processing.

11.2 Tracing a Global Variable

Scenario: You need to track how a global variable globalCounter changes at different key points in your application.
Profile Setup: Create multiple actions, each with a different breakpoint (e.g., func_A, func_B, main.cpp:150), but all dumping
the same variable globalCounter.
Result: You will get a series of timestamped files, one for each time the counter was dumped, allowing you to trace its value
through the program's execution flow.

11.3 Snapshots of Complex Data

Scenario: Your application has a large configuration or state object (ApplicationState appState) and you want to take a
complete snapshot of it at a critical point, like just before a long-running task.
Profile Setup: An action at longRunningTask.cpp:75 that dumps the appState object.
Result: A detailed JSON file like
app_state_snapshots/MyProfile_timestamp/longRunningTask.cpp_75_appState_timestamp.json will be created,
containing a full, nested representation of your application's state.

12. Advanced: The gdb_dumper.py Script

12.1 Role and Interaction with GDB

The gdb_dumper.py script is the core of the data extraction engine. It runs within the GDB process and has access to GDB's Python
API.

Serialization Logic:

1. Uses gdb.parse_and_eval() to get a gdb.Value object representing a C++ variable.
2. Recursively traverses this object, respecting the "Dumper Options" (max depth, etc.).
3. Constructs a Python dictionary/list representation of the C++ data.
4. Serializes this Python object into a JSON string.
5. Saves the full JSON string directly to a specified intermediate file (e.g., ...name.gdbdump.json).
6. Prints a small status JSON payload (indicating success/failure and the path written) to GDB's standard output, bracketed

by special delimiters.

GUI Processing: The main GUI captures this status payload to understand the outcome of the dump. In Profile Mode, it then
processes the intermediate file to create the final user-specified output (renaming for JSON, converting for CSV).

12.2 Dumper Log File (gdb_dumper_script_internal.log)

This log file, located in the main logs directory, is invaluable for debugging the dumper script itself. It records internal steps,
configurations, and errors that occur within the GDB environment, which are not visible in the main application log.

13. Appendix: Filename Placeholders

The following placeholders can be used in the "Filename Pattern" field (in the Action Editor) to construct the base name of your output
files. The final file extension (.json or .csv) is managed automatically.

{profile_name}: The name of the profile (sanitized for filesystem safety).
{app_name}: Base name of the target executable.
{breakpoint}: The breakpoint location string (sanitized).
{variable}: The variable/expression name being dumped (sanitized).
{timestamp}: A detailed timestamp (YYYYMMDD_HHMMSS_ms).

Example Pattern: dump_{app_name}_{breakpoint}_{variable}_{timestamp} Example Final Output (if JSON):
dump_myprogram_main_myVar_20231027_143005_123.json Example Intermediate GDB Dump File:
dump_myprogram_main_myVar_20231027_143005_123.gdbdump.json

	Cpp-Python GDB Debug Helper - User Manual
	Table of Contents
	1. Introduction
	2. System Requirements & Setup
	3. Installation and Execution
	4. File and Directory Structure
	5. Quick Start Guide
	6. User Interface Overview
	7. Configuration Window (Options > Configure Application...)
	8. Manual Debug Mode in Detail
	9. Profile Manager & Automated Execution
	10. Troubleshooting / FAQ
	11. Use Cases / Examples
	12. Advanced: The gdb_dumper.py Script
	13. Appendix: Filename Placeholders

