ARTOS: Airborne Radar Test & Orchestration System

Table of Contents

e Technical Design Specification (v2.1)
o 1. Executive Summary
2. Architettura a Livelli (Layered Architecture)

3. Il TestContext: Il Motore di Integrazione
s 3.1 Definizione del TestContext

4. Level 2: Dynamic Algorithm Library
s 4.1 Interfaccia Algoritmo Aggiornata
s 4.2 Esempio di Algoritmo Cross-Modulo: TargetValidationAlgo
5. Level 3: Test Execution (JSON & Python)
s 5.1 Test Plan (Logica Operativa)
o 6. Meccanismo di Data Flow e Visibilita
7. Workflow per i Collaboratori

[e]

o

o

[e]

o

Technical Design Specification (v2.1)

1. Executive Summary

Il sistema ARTOS ¢ un framework di orchestrazione per l'automazione dei test radar. L'architettura separa l'interfacciamento
hardware (Moduli), la logica di analisi (Algoritmi Dinamici) e la sequenza operativa (Test Plans). Il cuore del sistema ¢ il
TestContext, un'interfaccia unificata che permette sia ai test che agli algoritmi di accedere a dati e comandi in tempo reale.

2. Architettura a Livelli (Layered Architecture)

POON=

Level 0 - Hardware Abstraction Layer (HAL): Moduli 1553, SFP, TargetSim.
Level 1 - Orchestrator Core: Gestisce il ciclo di vita dei moduli e la sincronizzazione.

Level 2 - Dynamic Algorithm Library: Tool di analisi che utilizzano il Testcontext per elaborare dati cross-modulo.
Level 3 - Test Execution Layer: Script (JSON/Python) che orchestrano la chiamata ai moduli e 'esecuzione degli

algoritmi.

3. Il TestContext: Il Motore di Integrazione

Il TestCcontext non & solo un contenitore, ma fornisce i metodi per linterazione sicura con I'hardware e lo scambio di dati.

3.1 Definizione del TestContext

from typing import Any, Dict, Optional

class TestContext:

wnn

Unified interface to access hardware modules and system state.
Passed to both Test Scripts and Dynamic Algorithms.

LIRIRT]

def init (self, modules: Dict[str, Any]):
self. modules = modules
self.busl553 = modules.get ("busl553")
self.video = modules.get ("video")
self.target sim = modules.get ("target sim")
self.results cache: Dict[str, Any] = {}

def get module data(self, module name: str) -> Any:
"""Returns the current data buffer or status from a specific module.”""
module = self. modules.get (module name)
if module:
Assume modules implement a get current data method
return module.get data stream()
return None

def log event(self, message: str, level: str = "INFO"):
"""Centralized logging for reports."""
print (f"[{level}] {message}")

4. Level 2: Dynamic Algorithm Library

Gli algoritmi sono ora concepiti come "Agenti di Analisi" che operano sul contesto.

4.1 Interfaccia Algoritmo Aggiornata

import abc

class BaseAlgorithm(abc.ABC) :

Interface for dynamic algorithms.
Algorithms use the context to pull data and perform cross-module validation.

LIRIRT]

def init (self):
self.name = self. class . name

@abc.abstractmethod
def execute (self, context: TestContext, params: Dict[str, Any]) -> Dict[str,

Executes the logic.

:param context: Access to all HW modules and system data.
:param params: Specific parameters for this execution (e.g. thresholds).
:return: Analysis results with status (PASS/FAIL).

LIRIRT]

pass
4.2 Esempio di Algoritmo Cross-Modulo: TargetvalidationAlgo

Questo algoritmo dimostra come accedere a due moduli diversi tramite il contesto.

class TargetValidationAlgo (BaseAlgorithm) :

wnn

Verifies if a target injected via TargetSim appears on the 1553 Bus.

LIRIRT]

def execute(self, context: TestContext, params: Dict[str, Any]) -> Dict[str, Any]:
1. Get injected target info from TargetSim
injected targets = context.target sim.get active targets()

2. Get current messages from 1553 Bus
bus data = context.busl553.get message ("B6") # Example: Radar Track Message

3. Perform comparison logic (Algorithm-specific)
match found = self. compare data(injected targets, bus data, params|['tolerance'])

return {
"status": "PASS" if match found else "FAIL",
"details": f"Target match status: {match found}",
"timestamp": context.busl553.get system timestamp ()

}

def compare data(self, injected, bus, tolerance):
Implementation of the mathematical comparison
return True

5. Level 3: Test Execution (JSON & Python)
5.1 Test Plan (Logica Operativa)

L'utente scrive il test decidendo cosa fare e quale algoritmo di libreria usare per validare l'azione.
Esempio di Test Script (Python):

def run radar track test(context: TestContext):
Step 1: Inject target
context.target sim.inject target (id=101, distance=50, azimuth=0)

Step 2: Use an algorithm from the dynamic library to verify
The TestManager handles the call passing the context
result = context.run algorithm("TargetValidationAlgo", tolerance=0.5)

if result["status"] == "FAIL":
context.log event ("Target not detected by radar!", "ERROR")

6. Meccanismo di Data Flow e Visibilita

Per garantire che gli algoritmi abbiano i dati necessari, I'Orchestratore implementa le seguenti regole:

1. Data Pull: Gli algoritmi "pescano” (pull) i dati dai moduli hardware tramite il Testcontext. | moduli devono quindi
mantenere un buffer degli ultimi dati ricevuti.

2. Shared State: Il Testcontext mantiene una results_cache. Se 'Algoritmo A produce un risultato, I'Algoritmo B puo
leggerlo dal contesto nello step successivo.

3. Concurrency: Mentre i test e gli algoritmi girano nel thread principale (o thread di esecuzione test), i moduli HW
continuano a riempire i loro buffer in thread separati, garantendo che il Testcontext veda sempre dati aggiornati.

7. Workflow per i Collaboratori

¢ Sviluppatore Modulo (L0): Deve assicurarsi che il modulo esponga metodi "Getter" (es: get last frame (),
get_bus_state())aCCGSSib”idalTestContext

¢ Sviluppatore Algoritmo (L1): Riceve il Testcontext € scrive la logica di calcolo. Non deve preoccuparsi di come i dati
arrivano, solo di come elaborarli.

¢ Sviluppatore Test (L2): Utilizza i comandi dei moduli per muovere il sistema e gli algoritmi per validare i requisiti.

	ARTOS: Airborne Radar Test & Orchestration System
	Table of Contents
	Technical Design Specification (v2.1)
	1. Executive Summary
	2. Architettura a Livelli (Layered Architecture)
	3. Il TestContext: Il Motore di Integrazione
	3.1 Definizione del TestContext

	4. Level 2: Dynamic Algorithm Library
	4.1 Interfaccia Algoritmo Aggiornata
	4.2 Esempio di Algoritmo Cross-Modulo: TargetValidationAlgo

	5. Level 3: Test Execution (JSON & Python)
	5.1 Test Plan (Logica Operativa)

	6. Meccanismo di Data Flow e Visibilità
	7. Workflow per i Collaboratori

