
ARTOS: Airborne Radar Test & Orchestration System

Table of Contents

Technical Design Specification (v2.1)
1. Executive Summary
2. Architettura a Livelli (Layered Architecture)
3. Il TestContext: Il Motore di Integrazione

3.1 Definizione del TestContext
4. Level 2: Dynamic Algorithm Library

4.1 Interfaccia Algoritmo Aggiornata
4.2 Esempio di Algoritmo Cross-Modulo: TargetValidationAlgo

5. Level 3: Test Execution (JSON & Python)
5.1 Test Plan (Logica Operativa)

6. Meccanismo di Data Flow e Visibilità
7. Workflow per i Collaboratori

Technical Design Specification (v2.1)

1. Executive Summary

Il sistema ARTOS è un framework di orchestrazione per l'automazione dei test radar. L'architettura separa l'interfacciamento
hardware (Moduli), la logica di analisi (Algoritmi Dinamici) e la sequenza operativa (Test Plans). Il cuore del sistema è il
TestContext, un'interfaccia unificata che permette sia ai test che agli algoritmi di accedere a dati e comandi in tempo reale.

2. Architettura a Livelli (Layered Architecture)

1. Level 0 - Hardware Abstraction Layer (HAL): Moduli 1553, SFP, TargetSim.
2. Level 1 - Orchestrator Core: Gestisce il ciclo di vita dei moduli e la sincronizzazione.
3. Level 2 - Dynamic Algorithm Library: Tool di analisi che utilizzano il TestContext per elaborare dati cross-modulo.
4. Level 3 - Test Execution Layer: Script (JSON/Python) che orchestrano la chiamata ai moduli e l'esecuzione degli

algoritmi.

3. Il TestContext: Il Motore di Integrazione

Il TestContext non è solo un contenitore, ma fornisce i metodi per l'interazione sicura con l'hardware e lo scambio di dati.

3.1 Definizione del TestContext

from typing import Any, Dict, Optional

class TestContext:
 """
 Unified interface to access hardware modules and system state.
 Passed to both Test Scripts and Dynamic Algorithms.
 """

 def __init__(self, modules: Dict[str, Any]):
 self._modules = modules
 self.bus1553 = modules.get("bus1553")
 self.video = modules.get("video")
 self.target_sim = modules.get("target_sim")
 self.results_cache: Dict[str, Any] = {}

 def get_module_data(self, module_name: str) -> Any:
 """Returns the current data buffer or status from a specific module."""
 module = self._modules.get(module_name)
 if module:
 # Assume modules implement a get_current_data method
 return module.get_data_stream()
 return None

 def log_event(self, message: str, level: str = "INFO"):
 """Centralized logging for reports."""
 print(f"[{level}] {message}")

4. Level 2: Dynamic Algorithm Library

Gli algoritmi sono ora concepiti come "Agenti di Analisi" che operano sul contesto.

4.1 Interfaccia Algoritmo Aggiornata

import abc

class BaseAlgorithm(abc.ABC):
 """
 Interface for dynamic algorithms.
 Algorithms use the context to pull data and perform cross-module validation.
 """

 def __init__(self):
 self.name = self.__class__.__name__

 @abc.abstractmethod
 def execute(self, context: TestContext, params: Dict[str, Any]) -> Dict[str, Any]:
 """
 Executes the logic.

 :param context: Access to all HW modules and system data.
 :param params: Specific parameters for this execution (e.g. thresholds).
 :return: Analysis results with status (PASS/FAIL).
 """
 pass

4.2 Esempio di Algoritmo Cross-Modulo: TargetValidationAlgo

Questo algoritmo dimostra come accedere a due moduli diversi tramite il contesto.

class TargetValidationAlgo(BaseAlgorithm):
 """
 Verifies if a target injected via TargetSim appears on the 1553 Bus.
 """

 def execute(self, context: TestContext, params: Dict[str, Any]) -> Dict[str, Any]:
 # 1. Get injected target info from TargetSim
 injected_targets = context.target_sim.get_active_targets()

 # 2. Get current messages from 1553 Bus
 bus_data = context.bus1553.get_message("B6") # Example: Radar Track Message

 # 3. Perform comparison logic (Algorithm-specific)
 match_found = self._compare_data(injected_targets, bus_data, params['tolerance'])

 return {
 "status": "PASS" if match_found else "FAIL",
 "details": f"Target match status: {match_found}",
 "timestamp": context.bus1553.get_system_timestamp()
 }

 def _compare_data(self, injected, bus, tolerance):
 # Implementation of the mathematical comparison
 return True

5. Level 3: Test Execution (JSON & Python)

5.1 Test Plan (Logica Operativa)

L'utente scrive il test decidendo cosa fare e quale algoritmo di libreria usare per validare l'azione.

Esempio di Test Script (Python):

def run_radar_track_test(context: TestContext):
 # Step 1: Inject target
 context.target_sim.inject_target(id=101, distance=50, azimuth=0)

 # Step 2: Use an algorithm from the dynamic library to verify
 # The TestManager handles the call passing the context
 result = context.run_algorithm("TargetValidationAlgo", tolerance=0.5)

 if result["status"] == "FAIL":
 context.log_event("Target not detected by radar!", "ERROR")

6. Meccanismo di Data Flow e Visibilità

Per garantire che gli algoritmi abbiano i dati necessari, l'Orchestratore implementa le seguenti regole:

1. Data Pull: Gli algoritmi "pescano" (pull) i dati dai moduli hardware tramite il TestContext. I moduli devono quindi
mantenere un buffer degli ultimi dati ricevuti.

2. Shared State: Il TestContext mantiene una results_cache. Se l'Algoritmo A produce un risultato, l'Algoritmo B può
leggerlo dal contesto nello step successivo.

3. Concurrency: Mentre i test e gli algoritmi girano nel thread principale (o thread di esecuzione test), i moduli HW
continuano a riempire i loro buffer in thread separati, garantendo che il TestContext veda sempre dati aggiornati.

7. Workflow per i Collaboratori

Sviluppatore Modulo (L0): Deve assicurarsi che il modulo esponga metodi "Getter" (es: get_last_frame(),
get_bus_state()) accessibili dal TestContext.
Sviluppatore Algoritmo (L1): Riceve il TestContext e scrive la logica di calcolo. Non deve preoccuparsi di come i dati
arrivano, solo di come elaborarli.

Sviluppatore Test (L2): Utilizza i comandi dei moduli per muovere il sistema e gli algoritmi per validare i requisiti.

	ARTOS: Airborne Radar Test & Orchestration System
	Table of Contents
	Technical Design Specification (v2.1)
	1. Executive Summary
	2. Architettura a Livelli (Layered Architecture)
	3. Il TestContext: Il Motore di Integrazione
	3.1 Definizione del TestContext

	4. Level 2: Dynamic Algorithm Library
	4.1 Interfaccia Algoritmo Aggiornata
	4.2 Esempio di Algoritmo Cross-Modulo: TargetValidationAlgo

	5. Level 3: Test Execution (JSON & Python)
	5.1 Test Plan (Logica Operativa)

	6. Meccanismo di Data Flow e Visibilità
	7. Workflow per i Collaboratori

