
Leonardo Elettronica

Le informazioni contenute nel presente documento sono di proprietà di Leonardo S.p.a., e non possono, al pari di tale documento,
essere riprodotte, utilizzate o divulgate in tutto o in parte a terzi senza preventiva autorizzazione scritta di Leonardo S.p.a..

© Copyright Leonardo S.p.a.– Tutti i diritti riservati

Template: CFM001-T-IT-I en/it rev.04.05 Page 1 of 17

DOCUMENT NUMBER:

DOCUMENT REVISION:

DATE: 12/12/2025

Customer:

PyUCC User Manual

SOFTWARE USER MANUAL

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 2 of 17

REVISION RECORD

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 3 of 17

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 4 of 17

TABLE OF CONTENTS

Document Version: 1.0
Application: PyUCC (Python Unified Code Counter)

1 INTRODUCTION

PyUCC is an advanced static code analysis tool. Its primary objective is to provide quantitative metrics on software
development and, crucially, to track code evolution over time through a powerful Differing system.

1.1 What is it for?

Counting: Knowing exactly how many lines of code, comments, and blank lines make up your project.

Measuring: Calculating software complexity and maintainability.

Comparing: Understanding exactly what changed between two versions (added/removed/modified files and how
complexity has shifted).

2 CORE CONCEPTS

Before starting, it is useful to understand the key terms used in the application.

2.1 Baseline

A Baseline is an instant “snapshot” of your project at a specific moment in time.
* When you create a baseline, PyUCC saves a copy of the files and calculates all metrics.
* Baselines serve as reference points (benchmarks) for future comparisons.

2.2 Supported Metrics

SLOC (Source Lines of Code):

Physical Lines: Total lines in the file.

Code Lines: Lines containing executable code.

Comment Lines: Documentation lines.

Blank Lines: Empty lines (often used for formatting).

Cyclomatic Complexity (CC): Measures the complexity of the control flow (how many if, for, while statements,
etc.). Lower is better.

Maintainability Index (MI): An index from 0 to 100 estimating how easy the code is to maintain. Higher is
better (above 85 is excellent, below 65 is problematic).

2.3 Profile

A Profile is a saved configuration that tells PyUCC:
* Which folders to analyze.
* Which languages to include (e.g., Python and C++ only).
* What to ignore (e.g., venv, build folders, temporary files).

3 USER INTERFACE (GUI)

The interface is divided into functional zones to keep the workflow organized.

Top Bar:

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 5 of 17

Profile selection.

Access to Settings and Profile Manager (Manage).

Actions Bar: The main buttons to start operations (Scan, Countings, Metrics, Differing).

Progress Area: Progress bar and file counter.

Results Table: The large central table where data appears.

Log & Status: At the bottom, a log panel to see what is happening and a status bar monitoring system resources
(CPU/RAM).

4 STEP-BY-STEP GUIDE

4.1 First Run & Profile Configuration

The first thing to do upon opening PyUCC is to define what to analyze.

Click on Manage…⚙️ in the top bar.

Click on New📝 to clear the fields.

Enter a Name for the profile (e.g., “My Backend Project”).

In the Paths section, use Add Folder to select your code’s root directory.

In the Filter Extensions section, select the languages you are interested in (e.g., Python, Java).

In the Ignore patterns box, you can keep the defaults (which already exclude .git, __pycache__, etc.).

Click Save💾 .

4.2 Simple Analysis (Scan, Countings, Metrics)

If you only want to analyze the current state without comparisons:

 Scan:🔍 Simply verifies which files are found based on the profile filters. Useful to check if you are including the
right files.

 Countings:🔢 Analyzes every file and reports how many code, comment, and blank lines exist.

 Metrics:📊 Calculates Cyclomatic Complexity and Maintainability Index for each file.

Tip: You can double-click on a file in the results table to open it in the built-in File Viewer, which provides syntax
highlighting and a colored minimap (blue=code, green=comments).

4.3 The “Differing” Workflow (Comparison)

This is PyUCC’s most powerful feature.

Step A: Create the First Baseline
1. Select your profile.
2. Click on Differing🔀 .
3. If this is the first time you analyze this project, PyUCC will notify you: “No baseline found”.
4. Confirm creation. PyUCC will take a “snapshot” of the project (Baseline).

Step B: Work on the Code
Now you can close PyUCC and work on your code (modify files, add new ones, delete old ones).

Step C: Compare
1. Reopen PyUCC and select the same profile.
2. Click on Differing🔀 .
3. This time, PyUCC detects an existing previous Baseline and asks which one to compare against (if you have
multiple).
4. The result will be a table with specific color coding:

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 6 of 17

* Green: Added files or improved metrics.
* Red: Deleted files or worsened metrics (e.g., increased complexity).
* Yellow/Orange: Modified files.
* Δ (Delta) Columns: Show numerical differences (e.g., +50 code lines, -2 complexity).

Diff Viewer: If you double-click a row in the Differing results, a window will open showing the two files side-by-
side, highlighting exactly which lines changed.

5 EXEMPLARY USE CASES

5.1 Case 1: Refactoring

Goal: You want to clean up code and ensure you haven’t increased complexity.

Action: Create a Baseline before starting. Perform refactoring. Run Differing.

Verification: Check the Δ avg_cc column. If it is negative (e.g., -0.5), great! You reduced complexity. If Δ
comment_lines is positive, you improved documentation.

5.2 Case 2: Code Review

Goal: A colleague added a new feature. What changed?

Action: Run Differing against the previous master/main version.

Verification: Sort by “Status”. Immediately see Added (A) and Modified (M) files. Open the Diff Viewer on
modified files to inspect specific lines.

6 DEVELOPMENT PHILOSOPHY (FOR DEVELOPERS)

PyUCC was built following rigorous software engineering principles, reflected in its stability and usage.

6.1 Clean Code & PEP8 Standards

The code adheres to the Python PEP8 standard. This ensures that if you ever want to extend the tool or write
automation scripts using the core modules, you will find readable, standardized, and predictable code.

6.2 Separation of Concerns (SoC)

The application is strictly divided into two parts:
1. Core (pyucc.core): Contains pure logic (scanning, metric calculation, diff algorithms). It knows nothing about
the GUI.
2. GUI (pyucc.gui): Handles only visualization and user interaction.
Philosophy: This allows changing the interface without breaking the logic, or using the logic via command line
without launching the GUI.

6.3 Non-Blocking UI (Worker Manager)

You may notice the interface never freezes, even when analyzing thousands of files.
This is thanks to the WorkerManager. All heavy operations are executed in separate background threads. The
GUI receives updates via a thread-safe queue.
* User Benefit: You can always press “Cancel” if an operation takes too long.

6.4 Intelligent Matching Algorithm (Gale-Shapley)

In Differing, PyUCC doesn’t just check if filenames are identical. It uses an algorithm inspired by the “Stable
Marriage Problem” (Gale-Shapley) combined with Levenshtein distance on paths.

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 7 of 17

* Philosophy: If you move a file from one folder to another, the system attempts to recognize it as the same file
moved, rather than marking one as “Deleted” and one as “Added”.

6.5 Determinism

The system uses content hashing (SHA1/MD5) to optimize calculations (caching) and to determine if a file has
truly changed, ignoring the filesystem modification timestamp if the content remains identical.

7 TROUBLESHOOTING COMMON ISSUES

Program finds no files: Check the Profile Manager to see if the file extension is selected in the language list or
if the folder is covered by “Ignore patterns”.

Extreme slowness: If you included folders with thousands of small non-code files (e.g., node_modules or image
assets), add them to “Ignore patterns”.

Empty Diff Viewer: Ensure the source files still exist on disk. If you deleted the project folder after creating the
baseline, the viewer cannot display the current file.

8 NEW FEATURES (SINCE V1.0)

This release adds several capabilities that improve code-quality analysis, reproducibility of baselines, and
duplicate detection across a codebase. Below is a concise description of what changed and how to use the new
features.

8.1 Duplicate Detection (GUI + CLI)

What it does: Finds exact and fuzzy duplicates across the project. Exact duplicates are detected by content
hashing (SHA1). Fuzzy duplicates use k-gram fingerprinting with a winnowing step to create fingerprints, and a
Jaccard similarity score to rank likely duplicates.

Parameters: k (k-gram size), window (winnowing window), and threshold (percent similarity). Defaults are chosen
for balanced precision/recall but can be adjusted.

How to run (GUI): Use the new Duplicates button in the Actions bar (it appears before the Differ button). A dialog
lets you choose extensions, the similarity threshold, and fingerprinting parameters. Settings persist between
runs.

How to run (CLI): python -m pyucc duplicates <path> --threshold 5.0 --ext .py .c prints a JSON structure with
duplicates found.

Exports: Results can be exported to CSV and to a UCC-style textual report placed inside baseline folders (when
run during baseline creation).

8.2 UCC-style Duplicate and Differ Reports

Compact UCC-style table: Differ now produces a compact table compatible with UCC-like output, including
additional Δ (delta) columns: ΔCode, ΔComm, ΔBlank, ΔFunc, ΔAvgCC, ΔMI. This helps quickly see numeric
changes in code, comments, blank lines, number of functions, average cyclomatic complexity and
maintainability.

Duplicates report: A textual duplicates_report.txt is generated (when requested) that lists duplicate groups with
pairwise percent similarity and the parameters used to generate them. Baselines store the parameters so results
are reproducible.

Example (compact UCC-style snippet):

File Code Comm Blank Func AvgCC MI ΔCode ΔComm ΔBlank ΔFunc ΔAvgCC
ΔMI

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 8 of 17

src/module/a.py 120 10 8 5 2.3 78 +10 -1 0 +0 -0.1 +2
src/module/b_copy.py 118 8 10 5 2.4 76 -2 -2 +2 0 +0.1 -2

8.3 Scanner & Baseline Improvements

Centralized scanning: The scanner is the canonical provider of the file list. Heavy modules (Differ, Duplicates
finder) accept a file_list produced by the scanner to avoid rescanning and to ensure consistent filtering.

Ignore pattern normalization: Ignore entries like .bak are normalized to *.bak and matching is case-insensitive
by default; this prevents accidental inclusion of backup files in baselines.

Baseline reproducibility: Baselines now store the duplicates parameters and the file list snapshot. When a
baseline is re-created or analyzed later, PyUCC attempts to re-run per-file function analysis (if lizard is available)
so that function-level metrics in older baselines remain useful.

8.4 Notes on Dependencies

Function-level metrics (number of functions, per-function CC) rely on lizard. If lizard is not installed, PyUCC will
still produce SLOC and coarse metrics but function details may be missing. Baseline creation records this state
and will re-run function analysis if lizard becomes available later.

9 DUPLICATE DETECTION: ALGORITHMS AND TECHNICAL DETAILS

This section provides a deeper understanding of how PyUCC identifies duplicate code, what the algorithms do,
and how to interpret the results.

9.1 Exact Duplicate Detection

How it works:
- PyUCC normalizes each file (strips leading/trailing whitespace from each line, converts to lowercase
optionally).
- Computes a SHA1 hash of the normalized content.
- Files with identical hashes are considered exact duplicates.

Use case: Finding files that were copy-pasted with no or minimal changes (e.g., utils.py and utils_backup.py).

What you’ll see:
- In the GUI table: pairs of files marked as “exact” duplicates with 100% similarity.
- In the report: listed under “Exact duplicates” section.

9.2 Fuzzy Duplicate Detection (Advanced)

Fuzzy detection identifies files that are similar but not identical. This is useful for finding:
- Code that was copy-pasted and then slightly modified.
- Refactored modules that share large blocks of logic.
- Experimental branches or “almost-duplicates” that should be merged.

Algorithm Overview:

K-gram Hashing (Rolling Hash with Rabin-Karp):

Each file is divided into overlapping sequences of k consecutive lines (k-grams).

A rolling hash (Rabin-Karp polynomial hash) is computed for each k-gram.

This produces a large set of hash values representing all k-grams in the file.

Winnowing (Fingerprint Selection):

To reduce the number of hashes (and improve performance), PyUCC applies a “winnowing” technique.

A sliding window of size w moves over the hash sequence.

In each window, the minimum hash value is selected as a fingerprint.

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 9 of 17

This creates a compact set of representative fingerprints for the file.

Key property: If two files share a substring of at least k + w - 1 lines, they will share at least one fingerprint.

Inverted Index:

All fingerprints from all files are stored in an inverted index: {fingerprint -> [list of files containing it]}.

This allows fast lookup of which files share fingerprints.

Jaccard Similarity:

For each pair of files that share at least one fingerprint, PyUCC computes the Jaccard similarity:

Jaccard(A, B) = |A ∩ B| / |A B|∪
Where A and B are the sets of fingerprints for the two files.

If the Jaccard score
is above the
threshold (default:
0.85, meaning 85%
similarity), the pair
is flagged as a fuzzy
duplicate.

Percent Change Calculation:

PyUCC also estimates the percentage of lines that differ between the two files.

If pct_change <= threshold (e.g., ≤5%), the files are considered duplicates.

Parameters you can adjust:

k (k-gram size): Number of consecutive lines in each k-gram. Default: 25.

Larger k → fewer false positives, but may miss small duplicates.

Smaller k → more sensitive, but may produce false positives.

window (winnowing window size): Size of the window for selecting fingerprints. Default: 4.

Larger window → fewer fingerprints, faster processing, but may miss some matches.

Smaller window → more fingerprints, slower, but more thorough.

threshold (percent change threshold): Maximum allowed difference (in %) to still consider two files duplicates.
Default: 5.0%.

Lower threshold → stricter matching (only very similar files).

Higher threshold → more lenient (catches files with more differences).

Recommended settings:

Use Case

k

window

threshold

Strict duplicate finding (only near-identical files)

30

5

3.0%

Balanced (default)

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 10 of 17

25

4

5.0%

Loose matching (catch refactored code)

20

3

10.0%

Very aggressive (experimental)

15

2

15.0%

9.3 Understanding Duplicate Reports

GUI Table Columns:

File A / File B: The two files being compared.

Match Type: “exact” or “fuzzy”.

Similarity (%): For fuzzy matches, the Jaccard similarity score (0-100%).

Pct Change (%): Estimated percentage of lines that differ.

Textual Report (duplicates_report.txt):

The report is divided into two sections:

Exact Duplicates:

Exact duplicates: 3

src/utils.py <=> src/backup/utils_old.py
src/module/helper.py <=> src/module/helper - Copy.py

Fuzzy Duplicates:

Fuzzy duplicates (threshold): 5

src/processor.py <=> src/processor_v2.py
 Similarity: 92.5% | Pct Change: 3.2%

src/core/engine.py <=> src/experimental/engine_new.py
 Similarity: 88.0% | Pct Change: 4.8%

Interpretation:

High similarity (>95%): Strong candidates for deduplication. Consider keeping only one version or merging.

Medium similarity (85-95%): Review manually. May indicate refactored code or intentional variations.

Threshold violations: Files that exceed the pct_change threshold won’t appear in the report, even if they share
some fingerprints.

10 READING AND INTERPRETING DIFFER REPORTS

The Differ functionality produces several types of output. Understanding each helps you track code evolution
accurately.

10.1 Compact UCC-Style Table

When you run Differing, PyUCC generates a compact summary table similar to the original UCC tool:

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 11 of 17

Example:

File Code Comm Blank Func AvgCC MI ΔCode ΔComm ΔBlank ΔFunc ΔAvgCC
ΔMI

src/module/a.py 120 10 8 5 2.3 78 +10 -1 0 +0 -0.1 +2
src/module/b.py 118 8 10 5 2.4 76 -2 -2 +2 0 +0.1 -2
src/new_feature.py 45 5 3 2 1.8 82 +45 +5 +3 +2 +1.8 +82
src/old_code.py -- -- -- -- -- -- -30 -5 -2 -1 -2.1 -75

Column Meanings:

Column

Meaning

File

Relative path to the file

Code

Current number of code lines

Comm

Current number of comment lines

Blank

Current number of blank lines

Func

Number of functions detected (requires lizard)

AvgCC

Average cyclomatic complexity per function

MI

Maintainability Index (0-100, higher is better)

ΔCode

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 12 of 17

Change in code lines (current - baseline)

ΔComm

Change in comment lines

ΔBlank

Change in blank lines

ΔFunc

Change in function count

ΔAvgCC

Change in average cyclomatic complexity

ΔMI

Change in maintainability index

Color Coding (GUI):

Green rows: New files (Added) or improved metrics (e.g., ΔAvgCC < 0, ΔMI > 0).

Red rows: Deleted files or worsened metrics (e.g., ΔAvgCC > 0, ΔMI < 0).

Yellow/Orange rows: Modified files with mixed changes.

Gray rows: Unmodified files (identical to baseline).

What to look for:

ΔCode >> 0: Significant code expansion. Is it justified by new features?

ΔComm < 0: Documentation decreased. Consider adding more comments.

ΔAvgCC > 0: Complexity increased. May indicate need for refactoring.

ΔMI < 0: Maintainability worsened. Review the changes.

New files with high AvgCC: New code is already complex. Flag for review.

10.2 Detailed Diff Report (diff_report.txt)

A textual report is saved in the baseline folder:

Structure:

PyUCC Baseline Comparison Report
=================================
Baseline ID: MyProject__20251205T143022_local
Snapshot timestamp: 2025-12-05 14:30:22

Summary:
 New files: 3
 Deleted files: 1
 Modified files: 12
 Unchanged files: 45

Metric Changes:
 Total Code Lines: +150
 Total Comments: -5
 Average CC: +0.2 (slight increase in complexity)
 Average MI: -1.5 (slight decrease in maintainability)

[Compact UCC-style table here]

Legend:
 A = Added file

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 13 of 17

 D = Deleted file
 M = Modified file
 U = Unchanged file
 ...

10.3 CSV Exports

You can export any result table to CSV for further analysis in Excel, pandas, or BI tools.

Columns include:
- File path
- All SLOC metrics (code, comment, blank lines)
- Complexity metrics (CC, MI, function count)
- Deltas (if from a Differ operation)
- Status flags (A/D/M/U)

Use cases:
- Trend analysis over multiple baselines.
- Generating charts (e.g., complexity over time).
- Feeding into CI/CD quality gates.

11 PRACTICAL USE CASES AND WORKFLOWS

11.1 Use Case 1: Detecting Copy-Paste Code Before Code Review

Scenario: Your team is developing a new module. You suspect some developers copy-pasted existing code
instead of refactoring.

Workflow:
1. Create a profile for your project.
2. Click Duplicates button.
3. Set threshold to 5% (strict).
4. Review the results table.
5. For each fuzzy duplicate pair:
- Double-click to open both files in the diff viewer (if implemented).
- Assess whether the duplication is intentional or should be refactored into a shared utility.
6. Export to CSV and share with the team for discussion.

Expected outcome: You identify 3-5 near-duplicate files and create tickets to consolidate them.

11.2 Use Case 2: Tracking Complexity During a Refactoring Sprint

Scenario: Your team plans a 2-week refactoring sprint to reduce technical debt.

Workflow:
1. Before the sprint: Create a baseline (“Pre-Refactor”).
- Click Differing → Create baseline.
- Name it “PreRefactor_Sprint5”.
2. During the sprint: Developers refactor code, extract functions, add comments.
3. After the sprint: Run Differing against the baseline.
4. Review the compact table:

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 14 of 17

- Check ΔAvgCC: Should be negative (complexity reduced).
- Check ΔMI: Should be positive (maintainability improved).
- Check ΔComm: Should be positive (more documentation).
5. Generate a diff report and attach to sprint retrospective.

Expected outcome: Quantitative proof that refactoring worked: “We reduced average CC by 15% and increased
MI by 8 points.”

11.3 Use Case 3: Ensuring New Features Don’t Degrade Quality

Scenario: You’re adding a new feature to a mature codebase. You want to ensure the new code doesn’t introduce
excessive complexity.

Workflow:
1. Create a baseline before starting feature development.
2. Develop the feature in a branch.
3. Before merging to main:
- Run Differing to compare current state vs. baseline.
- Filter for new files (status = “A”).
- Check AvgCC and MI of new files.
- If AvgCC > 5 or MI < 70, flag for refactoring before merge.
4. Use Duplicates to ensure new code doesn’t duplicate existing utilities.

Expected outcome: New feature code passes quality gates before merge.

11.4 Use Case 4: Generating Compliance Reports for Audits

Scenario: Your organization requires periodic code quality audits.

Workflow:
1. Create baselines monthly (e.g., “Audit_2025_01”, “Audit_2025_02”, …).
2. Each baseline automatically generates:
- countings_report.txt
- metrics_report.txt
- duplicates_report.txt
3. Archive these reports in a compliance folder.
4. For the audit, provide:
- Trend of total SLOC over time.
- Trend of average CC and MI.
- Number of duplicates detected and resolved each month.

Expected outcome: Auditors see measurable improvement in code quality metrics over time.

11.5 Use Case 5: Onboarding New Developers with Code Metrics

Scenario: A new developer joins the team and needs to understand the codebase.

Workflow:
1. Run Metrics on the entire codebase.
2. Export to CSV.

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 15 of 17

3. Sort by AvgCC (descending) to identify the most complex modules.
4. Share the list with the new developer:
- “These 5 files have the highest complexity. Be extra careful when modifying them.”
- “These modules have low MI. They’re candidates for refactoring—good learning exercises.”
5. Use Duplicates to show which parts of the code have redundancy (explain why).

Expected outcome: New developer understands code hotspots and quality issues faster.

12 TIPS FOR EFFECTIVE USE

12.1 Profile Management

Create separate profiles for different subprojects or components.

Use ignore patterns aggressively to exclude:

node_modules, venv, .venv

Build outputs (build/, dist/, bin/)

Generated code

Test fixtures or mock data

12.2 Baseline Strategy

Naming convention: Use descriptive names with dates or version tags:

Release_v1.2.0_20251201

PreRefactor_Sprint10

BeforeMerge_FeatureX

Frequency: Create baselines at key milestones:

End of each sprint

Before/after major refactorings

Before releases

Retention: Keep at least 3-5 recent baselines. Archive older ones.

12.3 Interpreting Metrics

Cyclomatic Complexity (CC):
- 1-5: Simple, low risk.
- 6-10: Moderate complexity, acceptable.
- 11-20: High complexity, review recommended.
- 21+: Very high complexity, refactoring strongly recommended.

Maintainability Index (MI):
- 85-100: Highly maintainable (green zone).
- 70-84: Moderately maintainable (yellow zone).
- Below 70: Low maintainability (red zone), needs attention.

12.4 Duplicate Detection Best Practices

Start with default parameters (k=25, window=4, threshold=5%).

If you get too many false positives, increase k or decrease threshold.

If you suspect duplicates are being missed, decrease k or increase threshold.

Always review fuzzy duplicates manually—not all similarities are bad (e.g., interface implementations).

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 16 of 17

13 TROUBLESHOOTING AND FAQS

Q: Duplicates detection is slow on large codebases.

A:
- Use profile filters to limit the file types analyzed.
- Increase k and window to reduce the number of fingerprints processed.
- Exclude large auto-generated files or test fixtures.

Q: Why are some files missing function-level metrics?

A:
- Function-level analysis requires lizard. Install it: pip install lizard.
- Some languages may not be fully supported by lizard.

Q: Differ shows files as “Modified” but I didn’t change them.

A:
- Check if line endings changed (CRLF ↔ LF).
- Verify the file wasn’t reformatted by an auto-formatter.
- PyUCC uses content hashing—any byte-level change triggers “Modified” status.

Q: How do I reset all baselines?

A:
- Baselines are stored in the baseline/ folder (default).
- Delete the baseline folder or specific baseline subdirectories to reset.

Q: Can I run PyUCC in CI/CD pipelines?

A:
- Yes! Use the CLI mode:
bash python -m pyucc differ create /path/to/repo python -m pyucc differ diff <baseline_id> /path/to/repo python
-m pyucc duplicates /path/to/repo --threshold 5.0
- Parse the JSON output or text reports in your pipeline scripts.

Leonardo Elettronica
12/12/2025

 Rev.

PyUCC User Manual - USER MANUAL

Template: CFM001-T-IT-I en/it
rev.04.05

© Copyright Leonardo S.p.a.– Tutti i diritti riservati Page 17 of 17

	1 Introduction
	1.1 What is it for?

	2 Core Concepts
	2.1 Baseline
	2.2 Supported Metrics
	2.3 Profile

	3 User Interface (GUI)
	4 Step-by-Step Guide
	4.1 First Run & Profile Configuration
	4.2 Simple Analysis (Scan, Countings, Metrics)
	4.3 The “Differing” Workflow (Comparison)

	5 Exemplary Use Cases
	5.1 Case 1: Refactoring
	5.2 Case 2: Code Review

	6 Development Philosophy (For Developers)
	6.1 Clean Code & PEP8 Standards
	6.2 Separation of Concerns (SoC)
	6.3 Non-Blocking UI (Worker Manager)
	6.4 Intelligent Matching Algorithm (Gale-Shapley)
	6.5 Determinism

	7 Troubleshooting Common Issues
	8 New Features (Since v1.0)
	8.1 Duplicate Detection (GUI + CLI)
	8.2 UCC-style Duplicate and Differ Reports
	8.3 Scanner & Baseline Improvements
	8.4 Notes on Dependencies

	9 Duplicate Detection: Algorithms and Technical Details
	9.1 Exact Duplicate Detection
	9.2 Fuzzy Duplicate Detection (Advanced)
	9.3 Understanding Duplicate Reports

	10 Reading and Interpreting Differ Reports
	10.1 Compact UCC-Style Table
	10.2 Detailed Diff Report (diff_report.txt)
	10.3 CSV Exports

	11 Practical Use Cases and Workflows
	11.1 Use Case 1: Detecting Copy-Paste Code Before Code Review
	11.2 Use Case 2: Tracking Complexity During a Refactoring Sprint
	11.3 Use Case 3: Ensuring New Features Don’t Degrade Quality
	11.4 Use Case 4: Generating Compliance Reports for Audits
	11.5 Use Case 5: Onboarding New Developers with Code Metrics

	12 Tips for Effective Use
	12.1 Profile Management
	12.2 Baseline Strategy
	12.3 Interpreting Metrics
	12.4 Duplicate Detection Best Practices

	13 Troubleshooting and FAQs

