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1. Definitions 

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the 

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is 

also used to calculate productivity and other measurements. 

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending 

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment 

line. 

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon 

(C/C++, Java, PHP) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style 

conventions, but they are language-dependent. 

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or 

compiler to interpret other elements of the program. 

Each variable is defined with a dollar sign ($) before the variable's name.  In addition, like many lines of PHP 

code, a semicolon is used.  Semicolons do not, however, need to be placed at the end of commented lines. 

Strings, or a combination of characters, are defined with quotation marks around the value, while integers 

are not. 

The following table lists the PHP keywords that denote data declaration lines: 

Data Declaration 

$ 

Basic Data Types 

boolean 

integer 

float 

string 

array 

object 

resource 

NULL 

Table 1  Data Declaration Types 
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1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to 

compile. 

The following table lists the PHP keywords that denote compiler directive lines: 

define declare 

include include_once 

require require_once 

Table 2  Compiler Directives 

 

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs, 

form feed, carriage return, line feed, or their derivatives). 

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific 

comment delimiter. 

PHP comment delimiters are “//”, “#”, and “/*..*/”.  A whole comment line may span one line and does not 

contain any compliable source code.  An embedded comment can co-exist with compliable source code on 

the same physical line.  Banners and empty comments are treated as types of comments. 

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a 

breakpoint can be set in a debugging tool.  An instruction can be stated in a simple or compound form. 

• An executable line of code may contain the following program control statements: 

� Selection statements (if, ? operator, switch) 

� Iteration statements (for, foreach, while, do-while) 

� Empty statements (one or more “;”) 

� Jump statements (return, goto, break, continue, exit function) 

� Expression statements (function calls, assignment statements, operations, etc.) 

� Block statements 

• An executable line of code may not contain the following statements: 

� Compiler directives 

� Data declaration (data) lines 

� Whole line comments, including empty comments and banners 

� Blank lines 
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2. Checklist for source statement counts 

PHYSICAL SLOC COUNTING RULES 

MEASUREMENT UNIT 
ORDER OF 

PRECEDENCE 
PHYSICAL SLOC COMMENTS 

Executable Lines 1 One Per line Defined in 1.8 

Non-executable Lines    

Declaration (Data) lines 2 One per line Defined in 1.4 

Compiler Directives 3 One per line Defined in 1.5 

Comments   Defined in 1.7 

         On their own lines 4 Not Included (NI)  

         Embedded 5 NI  

         Banners 6 NI  

         Empty Comments 7 NI  

Blank Lines 8 NI Defined in 1.6 

 

LOGICAL SLOC COUNTING RULES 

NO. STRUCTURE 
ORDER OF 

PRECEDENCE 
LOGICAL SLOC RULES COMMENTS 

R01 “for”, “foreach”, “while” or “if” 

statement 

1 Count Once “while” is an independent 

statement. 

R02 do {…} while (…); statement 2 Count Once Braces {…} and semicolon ; 

used with this statement 

are not counted. 

R03 Statements ending by a 

semicolon 

3 Count once per statement, 

including empty statement 

Semicolons within “for” 

statement are not 

counted. Semicolons used 

with R01 and R02 are not 

counted. 

R04 Block delimiters, braces {…} 4 Count once per pair of braces 

{..}, except where a closing 

brace is followed by a 

semicolon, i.e. };or an 

opening brace comes after a 

keyword “else”. 

Braces used with R01 and 

R02 are not counted. 

Function definition is 

counted once since it is 

followed by {…}. 

R05 Compiler Directive 5 Count once per directive  
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3. Examples 

EXECUTABLE LINES 

 

SELECTION Statement 

 

ESS1 – if, elseif, else and nested if statements 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

if (<boolean expression>)  

       <statements>; 

if (<boolean expression>) : 

       <statements>; 

endif; 

 

if (<boolean expression>)   

      <statements>; 

elseif (<boolean expression>) 

      <statements>;. 

. 

. 

else <statements>; 

 

if (<boolean expression>)  

{ 

       <statements>; 

} 

else 

{ 

       <statements>; 

} 

 

if (<boolean expression>) : 

       <statements>; 

else: 

       <statements>; 

endif; 

 

 

if ($x != 0)  

    echo “non-zero”; 

if ($x != 0): 

    echo “non-zero”; 

endif; 

 

if ($x == 0)  

    echo “zero”; 

elseif ($x > 0)  

    echo “positive”; 

else  

    echo “negative”; 

 

 

if ($x != 0)  

{ 

    echo “non-zero”; 

} 

else 

{ 

    echo “zero”; 

} 

 

if ($x != 0): 

    echo “non-zero”; 

else: 

    echo “zero”; 

endif; 

 

 

1 

1 

1 

1 

0 

 

1 

1 

1 

1 

0 

1 

 

 

1 

0 

1 

0 

0 

0 

1 

0 

 

1 

1 

0 

1 

0 

ESS2 – ? operator 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

Exp1?Exp2:Exp3 

 

 

x > 0 ? echo “+” : echo “-”; 

 

1 
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ESS3 – switch and nested switch statements 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

switch (<expression>) 

{ 

    case <constant 1> : 

        <statements>; 

        break; 

    case <constant 2> : 

        <statements>; 

        break; 

    default: 

        <statements>; 

} 

 

switch (<expression>): 

    case <constant 1> : 

        <statements>; 

        break; 

    case <constant 2> : 

        <statements>; 

        break; 

    default: 

        <statements>; 

endswitch; 

 

 

switch (number) 

{ 

    case 1: 

        foo1(); 

        break; 

    case 2: 

        foo2(); 

        break; 

    default: 

        echo “invalid case”; 

} 

 

switch (number): 

    case 1: 

        foo1(); 

        break; 

    case 2: 

        foo2(); 

        break; 

    default: 

        echo “invalid case”; 

endswitch; 

 

 

1 

0 

0 

1 

1 

0 

1 

1 

0 

1 

0 

 

1 

0 

1 

1 

0 

1 

1 

0 

1 

0 

 

ESS4 – try-catch 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

try  

{  

   // code that could throw  

   // an exception  

}  

catch (exception-declaration)  

{  

   // code that executes when 

   // exception-declaration is thrown   

   // in the try block  

} 

 

try  

{ 

    echo "Calling function"; 

    throw Exception(“Error”); 

 

      MyFunc();  

} 

catch (IOException $e)  

{ 

      echo “Error: ” . $e; 

} 

 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 
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ITERATION Statement 

 

EIS1 – for 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

for (initialization; condition; increment) 

      <statements>; 

 

 

 

 

 

 

for (initialization; condition; increment): 

      <statements>; 

endfor; 

 

 

for (i = 0; i < 10; i++)  

    echo $i . “</br>”; 

 

for (i = 0; i < 10; i++)  

{ 

    echo $i . “</br>”; 

} 

 

for (i = 0; i < 10; i++): 

    echo $i . “</br>”; 

endfor; 

 

1 

1 

 

1 

0 

1 

0 

 

1 

1 

0 

EIS2 – empty statements (could be used for time delays) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

for ($i = 0; $i < SOME_VALUE; $i++) ; 

 

for ($i = 0; $i < 10; $i++) ; 

 

2 

 

EIS3 – while 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

while (<boolean expression>)  

      <statements>; 

 

 

 

 

while (<boolean expression>): 

      <statements>; 

endwhile; 

 

 

while ($i < 10)  

{ 

    echo $i . “</br>”; 

    $i++; 

} 

 

while ($i < 10): 

    echo $i . “</br>”; 

    $i++; 

endwhile; 

 

 

1 

0 

1 

1 

0 

 

1 

1 

1 

0 

EIS4 – do-while 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

do 

{ 

    <statements>; 

} while (<boolean expression>); 

 

 

do 

{ 

    echo $i; 

    $i++; 

 } while ($i > 0); 

 

 

0 

0 

1 

1 

1 
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EIS5 – foreach 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

foreach (array_expression as $value) 

    <statements>; 

 

 

 

foreach (array_expression as $value): 

    <statements>; 

endforeach; 

 

 

 

 

 

foreach (array_expression as $key => 

$value) 

    <statements>; 

 

 

 

$arr = array(1, 2, 3, 4); 

foreach ($arr as &$value) { 

    $value = $value * 2; 

} 

 

foreach ($arr as &$value): 

    $value = $value * 2; 

endforeach; 

 

$employeeAges; 

$employeeAges["Lisa"] = "28"; 

$employeeAges["Grace"] = "34"; 

 

foreach( $employeeAges as $key => $value) 

{ 

    echo "Name: $key, Age: $value <br />"; 

} 

 

 

1 

1 

1 

0 

 

1 

1 

0 

 

1 

1 

1 

 

1 

0 

1 

0 

 

JUMP Statement 

 

EJS1 - return 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

return expression if ($i==0) return; 

 

2 

 

EJS2 – goto, label 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

goto label; 

 

loop1: 

    $x++; 

    if ($x < $y) goto loop1; 

 

 

0 

1 

2 

EJS3 - break 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

break; 

 

if ($i > 10) break; 

 

2 

 

EJS4 – exit function 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

void exit (int return_code); 

 

if ($x < 0) exit (“Exit!”); 

 

2 
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EJS5 – continue 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

continue; 

 

 

while (list($key, $value) = each($arr)) { 

    if (!($key % 2)) {  

        continue; 

   } 

   do_something_odd($value); 

} 

 

1 

1 

1 

0 

1 

0 

 

 

EXPRESSION Statement 

 

EES1 – function call 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

<function_name> ( <parameters> ); 

      

read_file ($name); 1 

EES2 – assignment statement 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

<name> = <value>; 

 

 

$x =$ y; 

$var = ‘Joe’; 

$a = 1; $b = 2; $c = 3; 

 

1 

1 

3 

 

EES3 – empty statement (is counted as it is considered to be a placeholder for something to call 

attention) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

one or more “;” in succession ; 

 

1 per each 

 

 

BLOCK Statement 

 

EBS1 – block=related statements treated as a unit 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

/* start of block */ 

{ 

     <definitions> 

     <statement> 

}  

/* end of block */ 

 

/* start of block */ 

{  

     $i = 0; 

     echo $i; 

}  

/* end of block */ 

 

0 

0 

1 

1 

1 

0 
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DECLARATION OR DATA LINES 

DDL1 – function prototype, variable declaration 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 
 

functionname($var1,$var2,...,$varX) { 

    <statements> 

    <statements> 

    <statements> 

} 

 

$<name>;        

 

function prod($a,$b) {  

    $hello = "Hello World!"; 

    $a_number = 4; 

    $anotherNumber = 8; 

} 

 

$hello; 

 

1 

1 

1 

1 

0 

 

1 

 

 

 

COMPILER DIRECTIVES 

CDL1 – directive types 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

include <library_name>  

include_once<library_name> 

 

require<library_name> 

require_once<library_name> 

 

bool define ( string $name, mixed $value [, 

bool $case_insensitive] ) 

 

declare (directive) 

    statement 

 

include(test.php); 

include_once(foo.php); 

 

require(testfile.php); 

require_once(filename.php); 

 

define("CONSTANT", "Hello"); 

 

 

declare(ticks=2) { 

    for ($x = 1; $x < 50; ++$x) { 

        echo similar_text(md5($x), 

md5($x*$x)), "<br />;"; 

    } 

} 

 

 

1 

1 

 

1 

1 

 

1 

 

1 

1 

1 

0 

0 

 


