

PHP CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

April , 2010

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

6/22/2007 1.0 Original Release CSSE

11/8/2007 1.1 Updated CSSE

1/2/2013 1.2 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

5

5

5

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.1.5 Block Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

9

10

11

11

12

12

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, PHP) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

Each variable is defined with a dollar sign ($) before the variable's name. In addition, like many lines of PHP

code, a semicolon is used. Semicolons do not, however, need to be placed at the end of commented lines.

Strings, or a combination of characters, are defined with quotation marks around the value, while integers

are not.

The following table lists the PHP keywords that denote data declaration lines:

Data Declaration

$

Basic Data Types

boolean

integer

float

string

array

object

resource

NULL

Table 1 Data Declaration Types

Center for Systems and Software Engineering 2013

5

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the PHP keywords that denote compiler directive lines:

define declare

include include_once

require require_once

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

PHP comment delimiters are “//”, “#”, and “/*..*/”. A whole comment line may span one line and does not

contain any compliable source code. An embedded comment can co-exist with compliable source code on

the same physical line. Banners and empty comments are treated as types of comments.

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, ? operator, switch)

� Iteration statements (for, foreach, while, do-while)

� Empty statements (one or more “;”)

� Jump statements (return, goto, break, continue, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “foreach”, “while” or “if”

statement

1 Count Once “while” is an independent

statement.

R02 do {…} while (…); statement 2 Count Once Braces {…} and semicolon ;

used with this statement

are not counted.

R03 Statements ending by a

semicolon

3 Count once per statement,

including empty statement

Semicolons within “for”

statement are not

counted. Semicolons used

with R01 and R02 are not

counted.

R04 Block delimiters, braces {…} 4 Count once per pair of braces

{..}, except where a closing

brace is followed by a

semicolon, i.e. };or an

opening brace comes after a

keyword “else”.

Braces used with R01 and

R02 are not counted.

Function definition is

counted once since it is

followed by {…}.

R05 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, elseif, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if (<boolean expression>)

 <statements>;

if (<boolean expression>) :

 <statements>;

endif;

if (<boolean expression>)

 <statements>;

elseif (<boolean expression>)

 <statements>;.

.

.

else <statements>;

if (<boolean expression>)

{

 <statements>;

}

else

{

 <statements>;

}

if (<boolean expression>) :

 <statements>;

else:

 <statements>;

endif;

if ($x != 0)

 echo “non-zero”;

if ($x != 0):

 echo “non-zero”;

endif;

if ($x == 0)

 echo “zero”;

elseif ($x > 0)

 echo “positive”;

else

 echo “negative”;

if ($x != 0)

{

 echo “non-zero”;

}

else

{

 echo “zero”;

}

if ($x != 0):

 echo “non-zero”;

else:

 echo “zero”;

endif;

1

1

1

1

0

1

1

1

1

0

1

1

0

1

0

0

0

1

0

1

1

0

1

0

ESS2 – ? operator

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Exp1?Exp2:Exp3

x > 0 ? echo “+” : echo “-”;

1

Center for Systems and Software Engineering 2013

8

ESS3 – switch and nested switch statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

switch (<expression>)

{

 case <constant 1> :

 <statements>;

 break;

 case <constant 2> :

 <statements>;

 break;

 default:

 <statements>;

}

switch (<expression>):

 case <constant 1> :

 <statements>;

 break;

 case <constant 2> :

 <statements>;

 break;

 default:

 <statements>;

endswitch;

switch (number)

{

 case 1:

 foo1();

 break;

 case 2:

 foo2();

 break;

 default:

 echo “invalid case”;

}

switch (number):

 case 1:

 foo1();

 break;

 case 2:

 foo2();

 break;

 default:

 echo “invalid case”;

endswitch;

1

0

0

1

1

0

1

1

0

1

0

1

0

1

1

0

1

1

0

1

0

ESS4 – try-catch

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

try

{

 // code that could throw

 // an exception

}

catch (exception-declaration)

{

 // code that executes when

 // exception-declaration is thrown

 // in the try block

}

try

{

 echo "Calling function";

 throw Exception(“Error”);

 MyFunc();

}

catch (IOException $e)

{

 echo “Error: ” . $e;

}

0

0

1

1

0

1

0

1

0

1

0

Center for Systems and Software Engineering 2013

9

ITERATION Statement

EIS1 – for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (initialization; condition; increment)

 <statements>;

for (initialization; condition; increment):

 <statements>;

endfor;

for (i = 0; i < 10; i++)

 echo $i . “</br>”;

for (i = 0; i < 10; i++)

{

 echo $i . “</br>”;

}

for (i = 0; i < 10; i++):

 echo $i . “</br>”;

endfor;

1

1

1

0

1

0

1

1

0

EIS2 – empty statements (could be used for time delays)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for ($i = 0; $i < SOME_VALUE; $i++) ;

for ($i = 0; $i < 10; $i++) ;

2

EIS3 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while (<boolean expression>)

 <statements>;

while (<boolean expression>):

 <statements>;

endwhile;

while ($i < 10)

{

 echo $i . “</br>”;

 $i++;

}

while ($i < 10):

 echo $i . “</br>”;

 $i++;

endwhile;

1

0

1

1

0

1

1

1

0

EIS4 – do-while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

do

{

 <statements>;

} while (<boolean expression>);

do

{

 echo $i;

 $i++;

 } while ($i > 0);

0

0

1

1

1

Center for Systems and Software Engineering 2013

10

EIS5 – foreach

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

foreach (array_expression as $value)

 <statements>;

foreach (array_expression as $value):

 <statements>;

endforeach;

foreach (array_expression as $key =>

$value)

 <statements>;

$arr = array(1, 2, 3, 4);

foreach ($arr as &$value) {

 $value = $value * 2;

}

foreach ($arr as &$value):

 $value = $value * 2;

endforeach;

$employeeAges;

$employeeAges["Lisa"] = "28";

$employeeAges["Grace"] = "34";

foreach($employeeAges as $key => $value)

{

 echo "Name: $key, Age: $value
";

}

1

1

1

0

1

1

0

1

1

1

1

0

1

0

JUMP Statement

EJS1 - return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return expression if ($i==0) return;

2

EJS2 – goto, label

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

goto label;

loop1:

 $x++;

 if ($x < $y) goto loop1;

0

1

2

EJS3 - break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break;

if ($i > 10) break;

2

EJS4 – exit function

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

void exit (int return_code);

if ($x < 0) exit (“Exit!”);

2

Center for Systems and Software Engineering 2013

11

EJS5 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue;

while (list($key, $value) = each($arr)) {

 if (!($key % 2)) {

 continue;

 }

 do_something_odd($value);

}

1

1

1

0

1

0

EXPRESSION Statement

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> (<parameters>);

read_file ($name); 1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>;

$x =$ y;

$var = ‘Joe’;

$a = 1; $b = 2; $c = 3;

1

1

3

EES3 – empty statement (is counted as it is considered to be a placeholder for something to call

attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

one or more “;” in succession ;

1 per each

BLOCK Statement

EBS1 – block=related statements treated as a unit

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

/* start of block */

{

 <definitions>

 <statement>

}

/* end of block */

/* start of block */

{

 $i = 0;

 echo $i;

}

/* end of block */

0

0

1

1

1

0

Center for Systems and Software Engineering 2013

12

DECLARATION OR DATA LINES

DDL1 – function prototype, variable declaration

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

functionname($var1,$var2,...,$varX) {

 <statements>

 <statements>

 <statements>

}

$<name>;

function prod($a,$b) {

 $hello = "Hello World!";

 $a_number = 4;

 $anotherNumber = 8;

}

$hello;

1

1

1

1

0

1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

include <library_name>

include_once<library_name>

require<library_name>

require_once<library_name>

bool define (string $name, mixed $value [,

bool $case_insensitive])

declare (directive)

 statement

include(test.php);

include_once(foo.php);

require(testfile.php);

require_once(filename.php);

define("CONSTANT", "Hello");

declare(ticks=2) {

 for ($x = 1; $x < 50; ++$x) {

 echo similar_text(md5($x),

md5($x*$x)), "
;";

 }

}

1

1

1

1

1

1

1

1

0

0

