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1. Definitions

1.1.

1.2.

1.3.

1.4.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, PHP) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

Each variable is defined with a dollar sign ($) before the variable's name. In addition, like many lines of PHP
code, a semicolon is used. Semicolons do not, however, need to be placed at the end of commented lines.
Strings, or a combination of characters, are defined with quotation marks around the value, while integers
are not.

The following table lists the PHP keywords that denote data declaration lines:

Data Declaration

Basic Data Types

boolean
integer
float
string
array
object
resource
NULL
Table 1 Data Declaration Types
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1.5.

1.6.

1.7.

1.8.

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the PHP keywords that denote compiler directive lines:

define declare
include include_once
require require_once

Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

PHP comment delimiters are “//”, “#”, and “/*..*/”. A whole comment line may span one line and does not

contain any compliable source code. An embedded comment can co-exist with compliable source code on

the same physical line. Banners and empty comments are treated as types of comments.

Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

e An executable line of code may contain the following program control statements:

Selection statements (if, ? operator, switch)

Iteration statements (for, foreach, while, do-while)

Empty statements (one or more “;”)

Jump statements (return, goto, break, continue, exit function)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

e An executable line of code may not contain the following statements:

Compiler directives
Data declaration (data) lines
Whole line comments, including empty comments and banners

Blank lines
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2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “foreach”, “while” or “if” 1 Count Once “while” is an independent

statement statement.

R0O2 do {...} while (...); statement 2 Count Once Braces {...} and semicolon ;
used with this statement
are not counted.

RO3 Statements ending by a 3 Count once per statement, | Semicolons within “for”

semicolon including empty statement | statement are not
counted. Semicolons used
with RO1 and RO2 are not
counted.

RO4 Block delimiters, braces {...} 4 Count once per pair of braces | Braces used with RO1 and

{..}, except where a closing | RO2 are not counted.
brace is followed by a Function definition is
semicolon, i.e. };or an counted once since it is

opening brace comes aftera | followed by {...}.
keyword “else”.

RO5 Compiler Directive 5 Count once per directive
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3. Examples

EXECUTABLE LINES

ESS1 - if, elseif, else and nested if statements

if (<boolean expression>)
<statements>;

if (<boolean expression>) :
<statements>;

endif;

if (<boolean expression>)
<statements>;

elseif (<boolean expression>)
<statements>;.

else <statements>;

if (<boolean expression>)
{

<statements>;

}

else

{

<statements>;

}

if (<boolean expression>) :
<statements>;

else:
<statements>;

endif;

if (5x !1=0)
echo “non-zero”;
if (Sx 1= 0):

echo “non-zero”;
endif;

if (Sx ==0)

echo “zero”;
elseif (Sx > 0)

echo “positive”;
else

echo “negative”;

if (Sx 1=0)
{
echo “non-zero”;
}
else
{
echo “zero”;
}
if (Sx !=0):

echo “non-zero”;
else:

echo “zero”;
endif;

ORr OO0 O0ORKr O R R O R R R R OR R R, R

OrRr OR K

ESS2 - ? operator

Expl?Exp2:Exp3

x>0 ? echo “+” : echo

“ n,
’
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ESS3 — switch and nested switch statements

switch (<expression>)
{
case <constant 1>:
<statements>;
break;
case <constant 2> :
<statements>;
break;
default:
<statements>;

}

switch (<expression>):
case <constant 1>:
<statements>;
break;
case <constant 2> :
<statements>;
break;
default:
<statements>;
endswitch;

switch (number)
{
case 1:
fool();
break;
case 2:
foo2();
break;
default:
echo “invalid case”;

}

switch (number):
case 1:
fool();
break;
case 2:
foo2();
break;
default:
echo “invalid case”;
endswitch;

ORORRPRORREROOLER

OrRORRFRPRORROR

ESS4 — try-catch

try
{
// code that could throw
// an exception
}
catch (exception-declaration)
{
// code that executes when
// exception-declaration is thrown
// in the try block

}

try
{

echo "Calling function";
throw Exception(“Error”);

MyFunc();

}
catch (IOException Se)

{

echo “Error:” . Se;

}

OrRrORFrRrRORFrRrROFrEFr OO
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EIS1 —for

for (initialization; condition; increment)
<statements>;

for (initialization; condition; increment):
<statements>;
endfor;

for (i=0;i<10; i++)
echo Si. “</br>";

for (i=0;i<10; i++)
{
echo Si. “</br>";

}

for (i=0; i< 10; i++):

echo Si. “</br>";
endfor;

OoORr OR e

[N

EIS2 — empty statements (could be used for time delays)

for ($i = 0; $i < SOME_VALUE; $i++) ;

for ($i=0; Si<10; Si++) ;

EIS3 — while

while (<boolean expression>)
<statements>;

while (<boolean expression>):
<statements>;
endwhile;

while (Si < 10)

{
echo Si. “</br>";
Si++;

}

while (Si < 10):
echo Si. “</br>";
Si++;

endwhile;

O R Rk O R

O R Rk R

EIS4 — do-while

do
{

<statements>;
} while (<boolean expression>);

do

{
echo Si;
Si++;

} while (Si>0);

Y e =)
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EIS5 - foreach

foreach (array_expression as Svalue)
<statements>;

foreach (array_expression as Svalue):
<statements>;
endforeach;

foreach (array_expression as Skey =>
Svalue)
<statements>;

Sarr = array(1, 2, 3, 4);
foreach (Sarr as &Svalue) {
Svalue = Svalue * 2;

}

foreach (Sarr as &Svalue):
Svalue = Svalue * 2;
endforeach;

SemployeeAges;
SemployeeAges|["Lisa"] = "28";
SemployeeAges["Grace"] = "34";

foreach( SemployeeAges as Skey => Svalue)

{

echo "Name: Skey, Age: Svalue <br />";

}

O R Rk K.

[EE

O R O R

EJS1 - return

return expression

if ($i==0) return;

EJS2 - goto, label

break;

if (Si > 10) break;

goto label; loopl: 0
Sx++; 1
if (Sx < Sy) goto loop1; 2

EJS3 - break

EJS4 — exit function

void exit (int return_code);

if (Sx < 0) exit (“Exit!”);

10
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EJS5 - continue

continue; while (list(Skey, Svalue) = each(Sarr)) { 1
if (!(Skey % 2)) { 1

continue; 1

} 0

do_something_odd(Svalue); 1

} 0

EES1 - function call

<function_name> ( <parameters> ); read_file (Sname); 1

EES2 - assignment statement

<name> = <value>; Sx=Sy; 1
Svar = ‘Joe’; 1
Sa=1;8$b=2;5c=3; 3

EES3 — empty statement (is counted as it is considered to be a placeholder for something to call
attention)

“w,n

one or more “;” in succession 1 per each

EBS1 - block=related statements treated as a unit

/* start of block */ /* start of block */ 0
{ { 0
<definitions> Si=0; 1
<statement> echo Si; 1
} } 1
/* end of block */ /* end of block */ 0

11
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DECLARATION OR DATA LINES
DDL1 - function prototype, variable declaration
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
functionname(Svar1,Svar2,...,SvarX) { function prod($a,$b) { 1
<statements> Shello = "Hello World!"; 1
<statements> Sa_number = 4; 1
<statements> SanotherNumber = 8; 1
} } 0
S<name>; Shello; 1
COMPILER DIRECTIVES
CDL1 - directive types
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
include <library_name> include(test.php); 1
include_once<library_name> include_once(foo.php); 1
require<library_name> require(testfile.php);
require_once<library_name> require_once(filename.php);
bool define ( string Sname, mixed Svalue [, | define("CONSTANT", "Hello"); 1
bool Scase_insensitive] )
1
declare (directive) declare(ticks=2) { 1
statement for (Sx =1; $x < 50; ++5x) { 1
echo similar_text(md5(Sx), 0
md5(Sx*Sx)), "<br />;"; 0

}

12




