O,

2.3 PHP CodeCount™
ICIEIL:I,:I

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

April , 2010

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
6/22/2007 1.0 Original Release CSSE
11/8/2007 1.1 Updated CSSE
1/2/2013 1.2 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 5
1.6 Blank line 5
1.7 Comment line 5
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 9
3.13 Jump Statements 10
3.14 Expression Statements 11
3.15 Block Statements 11
3.2 Declaration lines 12
3.3 Compiler directives 12

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, PHP) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

Each variable is defined with a dollar sign ($) before the variable's name. In addition, like many lines of PHP
code, a semicolon is used. Semicolons do not, however, need to be placed at the end of commented lines.
Strings, or a combination of characters, are defined with quotation marks around the value, while integers
are not.

The following table lists the PHP keywords that denote data declaration lines:

Data Declaration

Basic Data Types

boolean
integer
float
string
array
object
resource
NULL
Table 1 Data Declaration Types

Center for Systems and Software Engineering | 2013

1.5.

1.6.

1.7.

1.8.

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the PHP keywords that denote compiler directive lines:

define declare
include include_once
require require_once

Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

PHP comment delimiters are “//”, “#”, and “/*..*/”. A whole comment line may span one line and does not

contain any compliable source code. An embedded comment can co-exist with compliable source code on

the same physical line. Banners and empty comments are treated as types of comments.

Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

e An executable line of code may contain the following program control statements:

Selection statements (if, ? operator, switch)

Iteration statements (for, foreach, while, do-while)

Empty statements (one or more “;”)

Jump statements (return, goto, break, continue, exit function)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

e An executable line of code may not contain the following statements:

Compiler directives
Data declaration (data) lines
Whole line comments, including empty comments and banners

Blank lines

Center for Systems and Software Engineering

2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “foreach”, “while” or “if” 1 Count Once “while” is an independent

statement statement.

R0O2 do {...} while (...); statement 2 Count Once Braces {...} and semicolon ;
used with this statement
are not counted.

RO3 Statements ending by a 3 Count once per statement, | Semicolons within “for”

semicolon including empty statement | statement are not
counted. Semicolons used
with RO1 and RO2 are not
counted.

RO4 Block delimiters, braces {...} 4 Count once per pair of braces | Braces used with RO1 and

{..}, except where a closing | RO2 are not counted.
brace is followed by a Function definition is
semicolon, i.e. };or an counted once since it is

opening brace comes aftera | followed by {...}.
keyword “else”.

RO5 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering

2013

3. Examples

EXECUTABLE LINES

ESS1 - if, elseif, else and nested if statements

if (<boolean expression>)
<statements>;

if (<boolean expression>) :
<statements>;

endif;

if (<boolean expression>)
<statements>;

elseif (<boolean expression>)
<statements>;.

else <statements>;

if (<boolean expression>)
{

<statements>;

}

else

{

<statements>;

}

if (<boolean expression>) :
<statements>;

else:
<statements>;

endif;

if (5x !1=0)
echo “non-zero”;
if (Sx 1= 0):

echo “non-zero”;
endif;

if (Sx ==0)

echo “zero”;
elseif (Sx > 0)

echo “positive”;
else

echo “negative”;

if (Sx 1=0)
{
echo “non-zero”;
}
else
{
echo “zero”;
}
if (Sx !=0):

echo “non-zero”;
else:

echo “zero”;
endif;

ORr OO0 O0ORKr O R R O R R R R OR R R, R

OrRr OR K

ESS2 - ? operator

Expl?Exp2:Exp3

x>0 ? echo “+” : echo

“ n,
’

Center for Systems and Software Engineering | 2013

ESS3 — switch and nested switch statements

switch (<expression>)
{
case <constant 1>:
<statements>;
break;
case <constant 2> :
<statements>;
break;
default:
<statements>;

}

switch (<expression>):
case <constant 1>:
<statements>;
break;
case <constant 2> :
<statements>;
break;
default:
<statements>;
endswitch;

switch (number)
{
case 1:
fool();
break;
case 2:
foo2();
break;
default:
echo “invalid case”;

}

switch (number):
case 1:
fool();
break;
case 2:
foo2();
break;
default:
echo “invalid case”;
endswitch;

ORORRPRORREROOLER

OrRORRFRPRORROR

ESS4 — try-catch

try
{
// code that could throw
// an exception
}
catch (exception-declaration)
{
// code that executes when
// exception-declaration is thrown
// in the try block

}

try
{

echo "Calling function";
throw Exception(“Error”);

MyFunc();

}
catch (IOException Se)

{

echo “Error:” . Se;

}

OrRrORFrRrRORFrRrROFrEFr OO

Center for Systems and Software Engineering

EIS1 —for

for (initialization; condition; increment)
<statements>;

for (initialization; condition; increment):
<statements>;
endfor;

for (i=0;i<10; i++)
echo Si. “</br>";

for (i=0;i<10; i++)
{
echo Si. “</br>";

}

for (i=0; i< 10; i++):

echo Si. “</br>";
endfor;

OoORr OR e

[N

EIS2 — empty statements (could be used for time delays)

for ($i = 0; $i < SOME_VALUE; $i++) ;

for ($i=0; Si<10; Si++) ;

EIS3 — while

while (<boolean expression>)
<statements>;

while (<boolean expression>):
<statements>;
endwhile;

while (Si < 10)

{
echo Si. “</br>";
Si++;

}

while (Si < 10):
echo Si. “</br>";
Si++;

endwhile;

O R Rk O R

O R Rk R

EIS4 — do-while

do
{

<statements>;
} while (<boolean expression>);

do

{
echo Si;
Si++;

} while (Si>0);

Y e =)

Center for Systems and Software Engineering | 2013

EIS5 - foreach

foreach (array_expression as Svalue)
<statements>;

foreach (array_expression as Svalue):
<statements>;
endforeach;

foreach (array_expression as Skey =>
Svalue)
<statements>;

Sarr = array(1, 2, 3, 4);
foreach (Sarr as &Svalue) {
Svalue = Svalue * 2;

}

foreach (Sarr as &Svalue):
Svalue = Svalue * 2;
endforeach;

SemployeeAges;
SemployeeAges|["Lisa"] = "28";
SemployeeAges["Grace"] = "34";

foreach(SemployeeAges as Skey => Svalue)

{

echo "Name: Skey, Age: Svalue
";

}

O R Rk K.

[EE

O R O R

EJS1 - return

return expression

if ($i==0) return;

EJS2 - goto, label

break;

if (Si > 10) break;

goto label; loopl: 0
Sx++; 1
if (Sx < Sy) goto loop1; 2

EJS3 - break

EJS4 — exit function

void exit (int return_code);

if (Sx < 0) exit (“Exit!”);

10

Center for Systems and Software Engineering | 2013

EJS5 - continue

continue; while (list(Skey, Svalue) = each(Sarr)) { 1
if (!(Skey % 2)) { 1

continue; 1

} 0

do_something_odd(Svalue); 1

} 0

EES1 - function call

<function_name> (<parameters>); read_file (Sname); 1

EES2 - assignment statement

<name> = <value>; Sx=Sy; 1
Svar = ‘Joe’; 1
Sa=1;8$b=2;5c=3; 3

EES3 — empty statement (is counted as it is considered to be a placeholder for something to call
attention)

“w,n

one or more “;” in succession 1 per each

EBS1 - block=related statements treated as a unit

/* start of block */ /* start of block */ 0
{ { 0
<definitions> Si=0; 1
<statement> echo Si; 1
} } 1
/* end of block */ /* end of block */ 0

11

Center for Systems and Software Engineering | 2013
DECLARATION OR DATA LINES
DDL1 - function prototype, variable declaration
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
functionname(Svar1,Svar2,...,SvarX) { function prod($a,$b) { 1
<statements> Shello = "Hello World!"; 1
<statements> Sa_number = 4; 1
<statements> SanotherNumber = 8; 1
} } 0
S<name>; Shello; 1
COMPILER DIRECTIVES
CDL1 - directive types
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
include <library_name> include(test.php); 1
include_once<library_name> include_once(foo.php); 1
require<library_name> require(testfile.php);
require_once<library_name> require_once(filename.php);
bool define (string Sname, mixed Svalue [, | define("CONSTANT", "Hello"); 1
bool Scase_insensitive])
1
declare (directive) declare(ticks=2) { 1
statement for (Sx =1; $x < 50; ++5x) { 1
echo similar_text(md5(Sx), 0
md5(Sx*Sx)), "
;"; 0

}

12

