O,

3_u1_x VHDL CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2012

Center for Systems and Software Engineering | 2013

Revision Sheet

Date

Version

Revision Description

Author

12/14/2012

1.0

Original Release

CSSE

Center for Systems and Software Engineering | 2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 5
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Sequential Statements 7
3.1.2 Concurrent Statements 8
3.13 Design Unit Statements 9
3.2 Declaration lines 12
3.3 Compiler directives 13

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the VHDL keywords that denote data declaration lines:

type assert file attribute
subtype signal constant generic
variable shared alias group
buffer linkage bus literal
new range register record
units

Table 1 Data Declaration Types

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.

The following table lists the VHDL directives:

Translation Directives

-- pragma translate_off

-- pragma translate_on

-- synopsis translate_off

-- synopsis translate_on

Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Center for Systems and Software Engineering | 2013

1.7.

1.8.

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

“woou

VHDL comment delimiters are A whole comment line may span one line and does not contain any
compilable source code. An embedded comment can co-exist with compilable source code on the same
physical line. Banners and empty comments are treated as types of comments.
Executable Line of code — A line that contains software instruction executed during runtime. Since VHDL is a
declarative programming language, statements that are considered executable consist of everything other
than compiler directives, comments and data declaration lines. An instruction can be stated in a simple or
compound form.
¢ An executable line of code may contain the following program control statements:
= Sequential statements (if, loop, wait)
= Concurrent statements (block, process, select, generate)
= Empty statements (one or more “;”)
= Design unit statements (entity, architecture, configuration, library and use)
e An executable line of code may not contain the following statements:
= Compiler directives
= Data declaration (data) lines

= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One per line
Non-executable Lines
Declaration (Data) lines 2 One per line
Compiler Directives 3 Once per directive

Comments Not Included (NI)
One their own lines 4 NI
Embedded 5 NI
Banner 6 NI
Empty Comments 7 NI

Blank Lines 8 NI

LoGICcAL SLOC COUNTING RULES

RO1 Design units 1 Count once during definition Declaration of a design
unit should end with
keyword “is” as the last
word on a line

RO2 Concurrent 2 Count once

statements
RO3 Sequential 3 Count once

Statements
RO4 | Statements ending 4 Count once per statement, including

by a semicolon empty statement

Center for Systems and Software Engineering | 2013

3. Examples

EXECUTABLE LINES

SEQUENTIAL Statement

ESS1 — wait, assert, report, next and null statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
[label:] wait [sensitivity clause] [condition wait until A>B and S1 or S2; 1
clause] ;
assert clk="1' report "clock not up" severity 0
[label:] assert boolean_condition [report WARNING; 1
string]
[severity name] ; report "Inconsistent data." severity 0
FAILURE; 1
[label:] report string [severity name] ;
sigd <= reject 2 ns sig5 after 3 ns; 1
[label:] target <= [delay_mechanism] Sig := Sa and Sb or Sc nand Sd nor Se xor Sf xnor | 1
waveform ; Sg;
compute(stuff, A=>a, B=>c+d); 1
[label:] target := expression ;
next when A>B; 1
[label:] procedure-name [(actual parameters
)1; null; 1
[label:] next [label2] [when condition] ;
[label:] null;
ESS2 —if, else if, else and nested if statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
[label:] if conditionl then if a=b then 1
sequence-of-statements c:=a; 1
elsif condition2 then elsif b<c then 1
sequence-of-statements d:=b; 1
end if [l[abel] ; b:=c; 1
else 0
do_it; 1
end if; 0

Center for Systems and Software Engineering | 2013
ESS3 — loop statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
[label:] loop loop 1
sequence-of-statements input_something; 1
end loop [label] ; exit when end_file; 1
end loop; 0
[label:] for variable in range loop for lin 1 to 10 loop 1
sequence-of-statements AA(l) :=0; 1
end loop [label | ; end loop; 0
[label:] while condition loop while not end_file loop 1
sequence-of-statements input_something; 1
end loop [label] ; end loop; 0
CONCURRENT Statement
ECS1 — block and process statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

label : block [(guard expression)] [is] maybe : block (B'stable(5 ns)) is 1
[generic clause [generic map aspect ;] port (A, B, C: inout std_logic); 1
| port map (A =>S1,B=>52,C=>outp); 1
[port clause [port map aspect ;]] constant delay: time := 2 ns; 1
[block declarative items] signal temp: std_logic; 1
begin begin 0
concurrent statements temp <= A xor B after delay; 1
end block [label] ; C <=temp nor B; 1
end block maybe; 0
printout: process(clk) 1
label : process [(sensitivity_list)] [is] variable my_line : LINE; 1
[process_declarative_items] begin 0
begin if clk="1" then 1
sequential statements write(my_line, string'("at clock ")); 1
end process [label] ; write(my_line, counter); 1
write(my_line, string'(" PC=")); 1
write(my_line, IF_PC); 1
writeline(output, my_line); 1
counter <= counter+1; 1
end if; 0
end process printout; 0

Center for Systems and Software Engineering | 2013
ECS2 — when-else, with-select and port map statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
target <= waveform when choice else sig2 <= not a_sig after 1 ns when ctl='1" else 1
waveform; b_sig;
with expression select target <= with count/2 select my_ctrl <= 1
waveform when choice [, waveform '1'when 1, 1
when choice | ; '0' when 2, 1
'X' when others; 1
part_name: entity A101: entity WORK.gate(circuit) 0
library_name.entity_name(architecture_name) portmap (inl=>a,in2=>b,outl=>c); |1
port map (actual arguments) ;
part_name: component_name PC_incr : add_32 port map (PC, four, zero, 0
port map (actual arguments) ; PC_next, ncl); 1
ECS3 - generate statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
label: for variable in range generate band : for | in 1 to 10 generate 1
block declarative items b2: forlJin1to 11 generate 1
begin b3: if abs(l-J)<2 generate 1
concurrent statements part: foo port map (a(l), b(2*J-1), c(l, | 1
end generate label ; N);
label: if condition generate end generate b3; 0
block declarative items end generate b2; 0
begin end generate band; 0
concurrent statements
end generate label ;
DESIGN UNIT Statement
EDUS1 - entity, architecture, configuration, package, procedure and function statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

entity identifier is
generic (generic_variable_declarations)
port
(input_and_output_variable_declarations) ;
[other declarations]
begin
[statements]
end entity identifier ;

entity Latch is
port (Din: in Word;
Dout: out Word;
Load: in Bit;
Clk: in Bit);
constant Setup: Time := 12 ns;
constant PulseWidth: Time := 50 ns;
use WORK.TimingMonitors.all;
begin
assert Clk="1"' or
Clk'Delayed'Stable(PulseWidth);
CheckTiming(Setup, Din, Load, Clk);
end entity Latch;

OR R RORRRRLROOOLHR

Center for Systems and Software Engineering

2013

architecture identifier of entity_name is
[declarations]
begin
[statements]
end architecture identifier;

configuration identifier of entity_name is
[declarations]
[block configuration]
end architecture identifier ;

package identifier is
[declarations, see allowed list below]
end package identifier ;

architecture circuits of add4c is
signal c : std_logic_vector(3 downto 0);
component fadd
port(a :in std_logic;
b :in std_logic;
cin :in std_logic;
s :outstd_logic;
cout : out std_logic);
end component fadd;
begin -- circuits of add4c
a0: fadd port map(a(0), b(0), cin, sum(0),
c(0));
al: fadd port map(a(1), b(1), c(0), sum(1),
c(1));
a2: fadd port map(a(2), b(2), c(1), sum(2),
c(2));
a3: fadd port map(a(3), b(3), c(2), sum(3),
c(3));
cout <= (a(3) and b(3)) or ((a(3) or b(3)) and
((a(2) and b(2)) or ((a(2) or b(2)) and
((a(1) and b(1)) or ((a(1) or b(1)) and
((a(0) and b(0)) or ((a(0) or b(0)) and
cin))))
after 1 ns;
end architecture circuits;

configuration add32_test_config of add32_test
is
for circuits
for all: add32
use entity WORK.add32(circuits);
for circuits
for all: add4c
use entity WORK.add4c(circuits);
for circuits
for all: fadd
use entity WORK.fadd(circuits);
end for;
end for;
end for;
end for;
end for;
end for;
end configuration add32_test_config;

package my pkg is
type small is range 0 to 4096;
procedure s_inc(A : inout small);
function s_dec(B : small) return small;
end package my_pkg;

P OOPFRPOO0OOORrPFERk

=

OFr OO0 OO

OO0 00000 RRRRRERRERERRRO

ORr R Rr PP

10

Center for Systems and Software Engineering | 2013
package body identifier is package body my_pkg is 1
[declarations, see allowed list below] procedure s_inc(A : inout small) is 1
end package body identifier ; begin 0
A= A+l; 1
end procedure s_ing; 0
function s_dec(B : small) return small is 1
begin 0
return B-1; 1
end function s_dec; 0
end package body my_pkg; 0
procedure identifier [(formal parameter list) | procedure build (A : in constant integer; 0
1; B : inout signal bit_vector; 0
C : out variable real; 0
D : file); 1
procedure identifier [(formal parameter list) | procedure print_header is 1
lis use STD.textio.all; 1
[declarations, see allowed list below] variable my_line : line; 1
begin begin 0
sequential statement(s) write (my_line, string'("A B C")); 1
end procedure identifier ; writeline (output, my_line); 1
end procedure print_header ; 0
function random return float is 1
function identifier [(parameter list)] variable X : float; 1
return a_type is begin 0
[declarations, see allowed list below] return X; 1
begin end function random ; 0
sequential statement(s)
return some_value;
end function identifier ;
EDUS2 - library and use statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
library library_name; library ieee; 1
use library_name.unit_name.all ; use ieee.std_logic_1164.all; 1
use ieee.std_logic_textio.all; 1
use ieee.std_logic_arith.all; 1
use ieee.numeric_std.all; 1
use ieee.numeric_bit.all; 1
use WORK.my_pkg.s_inc; 1

11

Center for Systems and Software Engineering

2013

DECLARATION OR DATA LINES

DDS1 - type, subtype, variable, constant, file, shared variable, alias, attribute, disconnect and group

statements

GENERAL EXAMPLE

SPECIFIC EXAMPLE

SLOC COUNT

type <identifier>;

type <identifier> is
<scalar_type_definition>;

type <identifier> is
<composite_type_definition>;

variable <identifier> :
<subtype_indication> [:=expression];

subtype <identifier> is
<subtype_indication>;

constant <identifier> :
<subtype_indication> := <constant

expression>;

signal <identifier> : <subtype_indication> [
signal_kind] [:=expression];

shared variable <identifier> :
< subtype_indication> [:=expression];

file identifier : <subtype_indication>
[file_open_information];

alias <new_name> is
<existing_name_of_same_type >;

alias new_name [: subtype_indication] : is
[signature];

attribute identifier : type_mark;
group <identifier> is (<entity_class_list>) ;

disconnect <signal_name> : type_mark
after <time_expression> ;

type node;
type my_bits is range 31 downto O;
type stuffis
record
| : integer;
X: real;
day : integer range 1 to 31;
name : string(1 to 48);
prob : matrix(1 to 3, 1 to 3);
end record;

variable item : node := root.all;

subtype small_int is integer range 0 to 10;

constant N, N5 : integer :=5;

signal my_word : word := X"01234567";

shared variable status : status_type := stop;

file my_file : text open write_mode is "file5.dat";

alias mantissa:std_logic_vector(23 downto 0) is
my_real(8 to 31);

alias "<" is my_compare [my_type, my_type, return
boolean] ;

attribute enum_encoding of my_state : type is "001
010011100 111"
group my_stuff is (label <>) ;

disconnect my_sig : std_logic after 3 ns;

=

OR R R R RO R

12

Center for Systems and Software Engineering | 2013
DSS2 — component statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
component <component_name> [is] component reg32 is 0
[generic (variable_declarations>) ;] generic (setup_time : time := 50 ps; 0
port (pulse_width : time := 100 ps); 1
<input_and_output_variable_declarations> port (input : in std_logic_vector(31 downto 0); 0
); output: out std_logic_vector(31 downto 0); 0
end component <component_name> ; Load :in std_logic_vector; 0
Clk :in std_logic_vector); 1
end component reg32; 0
COMPILER DIRECTIVES
CDP1 - pragma statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
-- pragma <directive statement> -- pragma translate_off 1

13

