

VHDL CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2012

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

12/14/2012 1.0 Original Release CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

5

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Sequential Statements

3.1.2 Concurrent Statements

3.1.3 Design Unit Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

8

9

12

13

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the VHDL keywords that denote data declaration lines:

type assert file attribute

subtype signal constant generic

variable shared alias group

buffer linkage bus literal

new range register record

units

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the VHDL directives:

Translation Directives

-- pragma translate_off

-- pragma translate_on

-- synopsis translate_off

-- synopsis translate_on

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Center for Systems and Software Engineering 2013

5

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

VHDL comment delimiters are “--“. A whole comment line may span one line and does not contain any

compilable source code. An embedded comment can co-exist with compilable source code on the same

physical line. Banners and empty comments are treated as types of comments.

1.8. Executable Line of code – A line that contains software instruction executed during runtime. Since VHDL is a

declarative programming language, statements that are considered executable consist of everything other

than compiler directives, comments and data declaration lines. An instruction can be stated in a simple or

compound form.

• An executable line of code may contain the following program control statements:

� Sequential statements (if, loop, wait)

� Concurrent statements (block, process, select, generate)

� Empty statements (one or more “;”)

� Design unit statements (entity, architecture, configuration, library and use)

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One per line

Non-executable Lines

 Declaration (Data) lines 2 One per line

 Compiler Directives 3 Once per directive

Comments Not Included (NI)

One their own lines 4 NI

Embedded 5 NI

Banner 6 NI

Empty Comments 7 NI

 Blank Lines 8 NI

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 Design units 1 Count once during definition Declaration of a design

unit should end with

keyword “is” as the last

word on a line

R02 Concurrent

statements

2 Count once

R03 Sequential

Statements

3 Count once

R04 Statements ending

by a semicolon

4 Count once per statement, including

empty statement

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SEQUENTIAL Statement

ESS1 – wait, assert, report, next and null statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

[label:] wait [sensitivity clause] [condition

clause] ;

[label:] assert boolean_condition [report

string]

 [severity name] ;

[label:] report string [severity name] ;

[label:] target <= [delay_mechanism]

waveform ;

[label:] target := expression ;

[label:] procedure-name [(actual parameters

)] ;

[label:] next [label2] [when condition] ;

[label:] null ;

wait until A>B and S1 or S2;

assert clk='1' report "clock not up" severity

WARNING;

report "Inconsistent data." severity

FAILURE;

sig4 <= reject 2 ns sig5 after 3 ns;

Sig := Sa and Sb or Sc nand Sd nor Se xor Sf xnor

Sg;

compute(stuff, A=>a, B=>c+d);

next when A>B;

null;

1

0

1

0

1

1

1

1

1

1

ESS2 – if, else if, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

[label:] if condition1 then

 sequence-of-statements

 elsif condition2 then

 sequence-of-statements

 end if [label] ;

if a=b then

 c:=a;

 elsif b<c then

 d:=b;

 b:=c;

 else

 do_it;

 end if;

1

1

1

1

1

0

1

0

Center for Systems and Software Engineering 2013

8

ESS3 – loop statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

[label:] loop

 sequence-of-statements

end loop [label] ;

[label:] for variable in range loop

 sequence-of-statements

 end loop [label] ;

 [label:] while condition loop

 sequence-of-statements

 end loop [label] ;

loop

 input_something;

 exit when end_file;

 end loop;

 for I in 1 to 10 loop

 AA(I) := 0;

 end loop;

 while not end_file loop

 input_something;

 end loop;

1

1

1

0

1

1

0

1

1

0

CONCURRENT Statement

ECS1 – block and process statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

label : block [(guard expression)] [is]

 [generic clause [generic map aspect ;]

]

 [port clause [port map aspect ;]]

 [block declarative items]

 begin

 concurrent statements

 end block [label] ;

label : process [(sensitivity_list)] [is]

 [process_declarative_items]

 begin

 sequential statements

 end process [label] ;

maybe : block (B'stable(5 ns)) is

 port (A, B, C : inout std_logic);

 port map (A => S1, B => S2, C => outp);

 constant delay: time := 2 ns;

 signal temp: std_logic;

 begin

 temp <= A xor B after delay;

 C <= temp nor B;

 end block maybe;

printout: process(clk)

 variable my_line : LINE;

 begin

 if clk='1' then

 write(my_line, string'("at clock "));

 write(my_line, counter);

 write(my_line, string'(" PC="));

 write(my_line, IF_PC);

 writeline(output, my_line);

 counter <= counter+1;

 end if;

 end process printout;

1

1

1

1

1

0

1

1

0

1

1

0

1

1

1

1

1

1

1

0

0

Center for Systems and Software Engineering 2013

9

ECS2 – when-else, with-select and port map statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

target <= waveform when choice else

waveform;

with expression select target <=

 waveform when choice [, waveform

when choice] ;

part_name: entity

library_name.entity_name(architecture_name)

 port map (actual arguments) ;

part_name: component_name

 port map (actual arguments) ;

sig2 <= not a_sig after 1 ns when ctl='1' else

b_sig;

with count/2 select my_ctrl <=

 '1' when 1,

 '0' when 2,

 'X' when others;

A101: entity WORK.gate(circuit)

 port map (in1 => a, in2 => b, out1 => c);

PC_incr : add_32 port map (PC, four, zero,

PC_next, nc1);

1

1

1

1

1

0

1

0

1

ECS3 – generate statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

label: for variable in range generate

 block declarative items

 begin

 concurrent statements

 end generate label ;

label: if condition generate

 block declarative items

 begin

 concurrent statements

 end generate label ;

band : for I in 1 to 10 generate

 b2 : for J in 1 to 11 generate

 b3 : if abs(I-J)<2 generate

 part: foo port map (a(I), b(2*J-1), c(I,

J));

 end generate b3;

 end generate b2;

 end generate band;

1

1

1

1

0

0

0

DESIGN UNIT Statement

EDUS1 – entity, architecture, configuration, package, procedure and function statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

entity identifier is

 generic (generic_variable_declarations)

 port

(input_and_output_variable_declarations) ;

 [other declarations]

begin

 [statements]

end entity identifier ;

entity Latch is

 port (Din: in Word;

 Dout: out Word;

 Load: in Bit;

 Clk: in Bit);

 constant Setup: Time := 12 ns;

 constant PulseWidth: Time := 50 ns;

 use WORK.TimingMonitors.all;

 begin

 assert Clk='1' or

Clk'Delayed'Stable(PulseWidth);

 CheckTiming(Setup, Din, Load, Clk);

end entity Latch;

1

0

0

0

1

1

1

1

0

1

1

1

0

Center for Systems and Software Engineering 2013

10

architecture identifier of entity_name is

 [declarations]

 begin

 [statements]

 end architecture identifier;

configuration identifier of entity_name is

 [declarations]

 [block configuration]

 end architecture identifier ;

package identifier is

 [declarations, see allowed list below]

 end package identifier ;

architecture circuits of add4c is

 signal c : std_logic_vector(3 downto 0);

 component fadd

 port(a : in std_logic;

 b : in std_logic;

 cin : in std_logic;

 s : out std_logic;

 cout : out std_logic);

 end component fadd;

 begin -- circuits of add4c

 a0: fadd port map(a(0), b(0), cin , sum(0),

c(0));

 a1: fadd port map(a(1), b(1), c(0), sum(1),

c(1));

 a2: fadd port map(a(2), b(2), c(1), sum(2),

c(2));

 a3: fadd port map(a(3), b(3), c(2), sum(3),

c(3));

 cout <= (a(3) and b(3)) or ((a(3) or b(3)) and

 ((a(2) and b(2)) or ((a(2) or b(2)) and

 ((a(1) and b(1)) or ((a(1) or b(1)) and

 ((a(0) and b(0)) or ((a(0) or b(0)) and

cin)))))))

 after 1 ns;

 end architecture circuits;

configuration add32_test_config of add32_test

is

 for circuits

 for all: add32

 use entity WORK.add32(circuits);

 for circuits

 for all: add4c

 use entity WORK.add4c(circuits);

 for circuits

 for all: fadd

 use entity WORK.fadd(circuits);

 end for;

 end for;

 end for;

 end for;

 end for;

 end for;

 end configuration add32_test_config;

package my_pkg is

 type small is range 0 to 4096;

 procedure s_inc(A : inout small);

 function s_dec(B : small) return small;

 end package my_pkg;

1

1

1

0

0

0

0

1

0

0

1

1

1

1

1

0

0

0

0

1

0

0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

0

Center for Systems and Software Engineering 2013

11

package body identifier is

 [declarations, see allowed list below]

 end package body identifier ;

procedure identifier [(formal parameter list)

] ;

procedure identifier [(formal parameter list)

] is

 [declarations, see allowed list below]

 begin

 sequential statement(s)

 end procedure identifier ;

function identifier [(parameter list)]

 return a_type is

 [declarations, see allowed list below]

 begin

 sequential statement(s)

 return some_value;

 end function identifier ;

 package body my_pkg is

 procedure s_inc(A : inout small) is

 begin

 A := A+1;

 end procedure s_inc;

 function s_dec(B : small) return small is

 begin

 return B-1;

 end function s_dec;

 end package body my_pkg;

procedure build (A : in constant integer;

 B : inout signal bit_vector;

 C : out variable real;

 D : file) ;

procedure print_header is

 use STD.textio.all;

 variable my_line : line;

 begin

 write (my_line, string'("A B C"));

 writeline (output, my_line);

 end procedure print_header ;

function random return float is

 variable X : float;

 begin

 return X;

 end function random ;

1

1

0

1

0

1

0

1

0

0

0

0

0

1

1

1

1

0

1

1

0

1

1

0

1

0

EDUS2 – library and use statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

library library_name ;

 use library_name.unit_name.all ;

library ieee ;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_textio.all;

 use ieee.std_logic_arith.all;

 use ieee.numeric_std.all;

 use ieee.numeric_bit.all;

 use WORK.my_pkg.s_inc;

1

1

1

1

1

1

1

Center for Systems and Software Engineering 2013

12

DECLARATION OR DATA LINES

DDS1 – type, subtype, variable, constant, file, shared variable, alias, attribute, disconnect and group

statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

type <identifier>;

type <identifier> is

<scalar_type_definition>;

type <identifier> is

<composite_type_definition>;

variable <identifier> :

<subtype_indication> [:=expression];

subtype <identifier> is

<subtype_indication>;

constant <identifier> :

<subtype_indication> := <constant

expression>;

signal <identifier> : <subtype_indication> [

signal_kind] [:=expression];

shared variable <identifier> :

 < subtype_indication> [:=expression];

file identifier : <subtype_indication>

 [file_open_information];

alias <new_name> is

<existing_name_of_same_type >;

alias new_name [: subtype_indication] : is

[signature];

attribute identifier : type_mark ;

group <identifier> is (<entity_class_list>) ;

disconnect <signal_name> : type_mark

after <time_expression> ;

type node;

type my_bits is range 31 downto 0;

type stuff is

 record

 I : integer;

 X : real;

 day : integer range 1 to 31;

 name : string(1 to 48);

 prob : matrix(1 to 3, 1 to 3);

 end record;

variable item : node := root.all;

subtype small_int is integer range 0 to 10;

constant N, N5 : integer := 5;

signal my_word : word := X”01234567”;

shared variable status : status_type := stop;

file my_file : text open write_mode is "file5.dat";

alias mantissa:std_logic_vector(23 downto 0) is

my_real(8 to 31);

alias "<" is my_compare [my_type, my_type, return

boolean] ;

attribute enum_encoding of my_state : type is "001

010 011 100 111";

group my_stuff is (label <>) ;

disconnect my_sig : std_logic after 3 ns;

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

0

1

0

1

0

1

1

1

Center for Systems and Software Engineering 2013

13

DSS2 – component statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

component <component_name> [is]

 [generic (variable_declarations>) ;]

 port (

<input_and_output_variable_declarations>

) ;

 end component <component_name> ;

component reg32 is

 generic (setup_time : time := 50 ps;

 pulse_width : time := 100 ps);

 port (input : in std_logic_vector(31 downto 0);

 output: out std_logic_vector(31 downto 0);

 Load : in std_logic_vector;

 Clk : in std_logic_vector);

 end component reg32;

0

0

1

0

0

0

1

0

COMPILER DIRECTIVES

CDP1 – pragma statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

-- pragma <directive statement>

-- pragma translate_off

1

