

CFScript CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

May , 2010

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

5/11/2010 1.0 Original Release CSSE

1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

4

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.1.5 Block Statements

3.2 Declaration lines

7

7

7

8

9

9

10

10

4.0 Notes on Special Character Processing 11

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the CFScript keywords that denote data declaration lines:

import include interface
function property var

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile. CFScript does not have any compiler directives.

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

CFScript comment delimiters are “//” and “/*”. A whole comment line may span one line and does not

contain any compliable source code. An embedded comment can co-exist with compliable source code on

the same physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, ? operator, switch)

� Iteration statements (for, while, do-while)

� Empty statements (one or more “;”)

� Jump statements (return, goto, break, continue, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One per line Defined in 1.8

Non-executable Lines

Declaration (Data) Lines 2 One per line Defined in 1.4

Compiler Directives 3 NA Defined in 1.5

Comments Defined in 1.7

On their own lines 4 Not Included

Embedded 5 Not Included

Banners 6 Not Included

Empty Comments 7 Not Included

Blank Lines 8 Not Included Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “while”, “for

each” or “if”

statement

1 Count once “while” is an

independent

statement.

R02 do {…} while (…);

statement

2 Count once Braces {…} and

semicolon; used with

this statement are not

counted.

R03 Statements ending

by a semicolon

3 Count once per statement, including

empty statement.

Semicolons within

“for” statement are

not counted.

Semicolons used with

R01 and R02 are not

counted.

R04 Block delimiters,

braces {…}

4 Count once per pair of braces {..}, except

where closing brace is followed by a

semicolon, i.e. };or an opening brace

comes after a keyword “else”.

Braces used with R01

and R02 are not

counted. Function

definition is counted

once since it is

followed by {…}.

R05 Compiler directive 5 NA

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statements

ESS1 – if, else if, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if (<boolean expression>)

 <statements>;

if (<boolean expression>)

 <statements>;

else

 <statements>;

if (<boolean expression>)

 <statements>;

else if (<boolean expression>)

 <statements>;.

else

 <statements>;

NOTE: complexity is not considered, i.e.

multiple “&&” or “||” as part of the

expression.

if (x != 0)

 WriteOutput (“non-zero
”);

if (x > 0)

 WriteOutput (“positive
”);

else

 WriteOutput (“negative
”);

if (x == 0)

 WriteOutput (“zero”);

else if (x > 0)

 WriteOutput (“positive
”);

else {

 WriteOutput (“negative
”);

}

if ((x != 0) && (x > 0))

 WriteOutput (“positive
”);

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

ESS2 - ? operator

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Exp1?Exp2:Exp3

x > 0 ? WriteOutput (“positive
”) :

WriteOutput (“negative
”);

1

ESS3 – switch and nested switch statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

switch (<expression>)

{

 case <constant 1>:

 <statements>;

 break;

 default:

 <statements>;

}

switch (number)

{

 case 1:

 WriteOutput (“case 1
”);

 break;

 default:

 WriteOutput (“invalid case
”);

}

1

0

0

1

1

0

1

0

Center for Systems and Software Engineering 2013

8

ESS4 – try-catch

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

try {} catch() {}

try {

 inputFileName=arg;

}

catch (IOException e) {

 System.err.println(e);

 System.exit(1);

}

1

1

0

1

1

1

0

ITERATION Statements

EIS1 - for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (initialization; condition; increment)

 <statement>;

NOTE: “for” statement counts as one, no

matter how many optional expressions it

contains, i.e.

for (i = 0, j = 0; I < 5, j < 10; i++, ,j++)

for (i = 0; i < 10; i++)

 i & “
”);

1

1

EIS2 – empty statements (could be used for time delays)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (i = 0; i < SOME_VALUE; i++) ;

for (i = 0; i < 10; i++) ;

2

EIS3 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while (<boolean expression>)

 <statement>;

while (i < 10)

{

 WriteOutput (i & “
”);

 i++;

}

1

0

1

1

0

Center for Systems and Software Engineering 2013

9

EIS4 – do-while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

do

{

 <statements>;

} while (<boolean expression>);

do

{

 ch = getCharacter();

} while (ch != ‘\n’);

0

0

1

1

EIS5 – for-each

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (String name: moreNames)

 <statements>;

for (String n: Names)

 WriteOutput (ncharAt(0));

1

1

JUMP Statements

(are counted as they invoke action-pass to the next statement)

EJS1 – return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return expression;

If (i == 0) return;

2

EJS2 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break;

If (i > 10) break;

2

EJS3 – exit function

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

exit return_code;

If (x < 0) exit 1;

2

EJS4 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue;

while (!done)

{

 ch = getchar();

 if (char == ‘\n’)

 {

 done = true;

 continue;

 }

}

1

0

1

1

0

1

1

0

0

Center for Systems and Software Engineering 2013

10

EXPRESSION Statements

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> (<parameters>);

read_file (name);

1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>

x = y;

char name[6] = “file1”;

a = 1; b = 2; c = 3;

1

1

3

EES3 - empty statement(is counted as it is considered to be a placeholder for something to call attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

one or more “;” in succession

;

1 per each

BLOCK Statements

EBS1 – block means related statements treated as a unit

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

{ /* start of block */

 <definitions>

 <statement>

} /* end of block */

/* start of block */

{

 i = 0;

 System.out.print (“%d”, i);

} /* end of block */

0

0

1

1

1

DECLARATION OR DATA LINES

DDL1 – function prototype variable declaration

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function>

include template="myinclude.cfm"

import "tag library location"

1

1

Center for Systems and Software Engineering 2013

11

4. Notes on Special Character Processing

1) Quotes:

 Start of Quotes: "\"'"

 End of Quotes: "\"'"

2) File extension recognized for CFScript: “.cfs”

