O,

“ 1113 CFScript CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

May , 2010

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
5/11/2010 1.0 Original Release CSSE
1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 4
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.1.3 Jump Statements 9
3.14 Expression Statements 9
3.15 Block Statements 10
3.2 Declaration lines 10
4.0 Notes on Special Character Processing 11

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the CFScript keywords that denote data declaration lines:

i mport i ncl ude i nterface
function property var
Table 1 Data Declaration Types

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile. CFScript does not have any compiler directives.

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

CFScript comment delimiters are “//” and “/*”. A whole comment line may span one line and does not
contain any compliable source code. An embedded comment can co-exist with compliable source code on

the same physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:

Selection statements (if, ? operator, switch)

Iteration statements (for, while, do-while)

Empty statements (one or more “;”)

Jump statements (return, goto, break, continue, exit function)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

An executable line of code may not contain the following statements:

Data declaration (data) lines
Whole line comments, including empty comments and banners

Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One per line Defined in 1.8
Non-executable Lines
Declaration (Data) Lines 2 One per line Defined in 1.4
Compiler Directives 3 NA Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included
Embedded 5 Not Included
Banners 6 Not Included
Empty Comments 7 Not Included
Blank Lines 8 Not Included Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “while”, “for 1 Count once “while” is an
each” or “if” independent
statement statement.
RO2 | do{..} while(..); 2 Count once Braces{...} and
statement semicolon; used with
this statement are not
counted.
RO3 | Statements ending 3 Count once per statement, including Semicolons within

“for” statement are
not counted.
Semicolons used with
RO1 and RO2 are not
counted.

by a semicolon empty statement.

RO4 Block delimiters, 4 Count once per pair of braces {..}, except Braces used with RO1
braces {...} where closing brace is followed by a and RO2 are not
semicolon, i.e. };or an opening brace counted. Function
comes after a keyword “else”. definition is counted
once since it is
followed by {...}.
RO5 | Compiler directive 5 NA

Center for Systems and Software Engineering | 2013
3. Examples
EXECUTABLE LINES
SELECTION Statements
ESS1 - if, else if, else and nested if statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
if (<boolean expression>) if (x I=0) 1
<statements>; WriteOutput (“non-zero
"); 1
if (<boolean expression>) if (x>0) 1
<statements>; WriteOutput (“positive
"); 1
else else 0
<statements>; WriteOutput (“negative
"); 1
if (<boolean expression>) if (x ==0) 1
<statements>; WriteOutput (“zero”); 1
else if (<boolean expression>) else if (x> 0) 1
<statements>;. WriteOutput (“positive
"); 1
else else { 0
<statements>; WriteOutput (“negative
"); 1
} 0
NOTE: complexity is not considered, i.e.
multiple “&&” or “| |” as part of the if ((x '=0) && (x > 0)) 1
expression. WriteOutput (“positive
"); 1
ESS2 - ? operator
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
Expl?Exp2:Exp3 x >0 ? WriteOutput (“positive
”) : 1
WriteOutput (“negative
");
ESS3 — switch and nested switch statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
switch (<expression>) switch (number) 1
{ { 0
case <constant 1>: case 1: 0
<statements>; WriteOutput (“case 1
"); 1
break; break; 1
default: default: 0
<statements>; WriteOutput (“invalid case
"); 1
} } 0

Center for Systems and Software Engineering | 2013
ESS4 — try-catch
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
try {} catch() {} try { 1
inputFileName=arg; 1
} 0
catch (IOException e) { 1
System.err.printin(e); 1
System.exit(1); 1
} 0
ITERATION Statements
EIS1 - for
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
for (initialization,; condition; increment) for (i=0;i<10; i++) 1
<statement>, i & “
"); 1
NOTE: “for” statement counts as one, no
matter how many optional expressions it
contains, i.e.
for(i=0,j=0;1<5,j<10;i++, j++)
EIS2 — empty statements (could be used for time delays)
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
for (i=0; i < SOME_VALUE; i++) ; for (i=0;i<10; i++); 2
EIS3 — while
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
while (<boolean expression>) while (i < 10) 1
<statement>; { 0
WriteOutput (i & “
"); 1
i++; 1
} 0

Center for Systems and Software Engineering | 2013
EIS4 — do-while
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
do do 0
{ { 0
<statements>; ch = getCharacter(); 1
} while (<boolean expression>); } while (ch = \n’); 1
EIS5 - for-each
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
for (String name: moreNames) for (String n: Names) 1
<statements>; WriteOutput (ncharAt(0)); 1
JumpP Statements
(are counted as they invoke action-pass to the next statement)
EJS1 —return
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
return expression; If (i ==0) return; 2
EJS2 - break
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
break; If (i > 10) break; 2
EJS3 — exit function
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
exit return_code; If (x < 0) exit 1; 2
EJS4 - continue
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
continue; while (!done) 1
{ 0
ch = getchar(); 1
if (char == \n’) 1
{ 0
done = true; 1
continue; 1
} 0
} 0

Center for Systems and Software Engineering | 2013

EXPRESSION Statements

EES1 — function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<function_name> (<parameters>); read_file (name); 1
EES2 — assighment statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<name> = <value> X=Yy; 1
char name[6] = “filel”; 1
a=1;b=2;c=3; 3

EES3 - empty statement(is counted as it is considered to be a placeholder for something to call attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
one or more “;” in succession ; 1 per each
BLOCK Statements
EBS1 - block means related statements treated as a unit
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
{ /* start of block */ /* start of block */ 0
<definitions> { 0
<statement> i=0; 1
}/* end of block */ System.out.print (“%d”, i); 1
}/* end of block */ 1
DECLARATION OR DATA LINES
DDL1 - function prototype variable declaration
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<function> include template="myinclude.cfm" 1
import "tag library location" 1

10

Center for Systems and Software Engineering

2013

4. Notes on Special Character Processing

1) Quotes:
Start of Quotes: "\""
End of Quotes: "\""

”

2) File extension recognized for CFScript: “.cfs

11

