

IDL CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

October 22, 2014

Center for Systems and Software Engineering 2014

2

Revision Sheet

Date Version Revision Description Author

6/5/2014 1.0 Original Release CSSE

8/11/2014 1.1 Updated and revised document CSSE

9/23/2014 1.2 Updated and revised document CSSE

10/22/2014 1.3 Updated and revised document CSSE

Center for Systems and Software Engineering 2014

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.2 Compiler directives

7

7

7

8

8

9

9

4.0 Cyclomatic Complexity 10

Center for Systems and Software Engineering 2014

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon,

comma, or a carriage return. Logical SLOC are not sensitive to format and style conventions, but they are

language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

IDL uses implicitly defined types so that there are no data declaration statements.

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile. In IDL, the character “@”at sign at the beginning of a line causes the IDL compiler to substitute the

contents of the file whose name appears after the “@” for the line.

The following table lists the IDL characters that denote compiler directive lines:

@

Table 1 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

IDL single line comment delimiter is “;”. A whole comment line may span one line and does not contain any

compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2014

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, then, else, switch, case)

� Iteration statements (for, foreach, repeat, until, while, do)

� Error control statements

� Jump statements (break, continue, goto)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements (begin, end). Note that in “case” and “switch” statement blocks, case or switch

expressions that include relational operators and evaluate to true or false can appear in selector

expressions. In this case, the selector expression is also counted as an executable line of code.

• An executable line of code may not contain the following statements:

� Compiler directives

� Whole line comments, including empty comments and banners

� Blank lines

Note that the IDL function “where” may include an array expression as its first input parameter. This array

expression may be in the form of a statement which may include relational operators. In this case, we do

not count the relational operator statement as a separate line of code. It is considered as belonging to the

same code line as the “where” function.

Center for Systems and Software Engineering 2014

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Compiler Directives 2 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 3 Not Included (NI)

 Embedded 4 NI

 Banners 5 NI

 Empty Comments 6 NI

Blank Lines 7 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “foreach”, “repeat”,

“while”, or “if” statement

1 Count Once Loops and conditionals are

independent statements.

R02 repeat (…) until (…) statement 2 Count Once The subject statement can

also be in the form of a

“begin … endrep” block.

R03 Line terminated by new line

character and last symbol is not

ellipsis “$”

3 Count Once End of command

R04 Block delimiters, “begin”, “end” 4 Count once per “begin …

end” block.

“begin … end” blocks used

with R01 and R02 are not

counted.

R05 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering 2014

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, elseif, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if <boolean expression> then begin

 <statements>

endif

if <boolean expression> then begin

 <statements>

endif else begin

 <statements>

endelse

NOTE: complexity is not considered, i.e.

multiple “&&” or “||” as part of the

expression.

if (A EQ 2) then begin

 print, ‘A = ‘, A

endif

if (A EQ 2) then begin

 print, ‘A = ‘, A

endif else begin

 if A NE 2 then print, ‘A != 2’

endelse

if (x NE 0) && (x > 0) then begin

 x = x + 4

endif

1

1

0

1

1

0

1

0

1

1

0

ESS2 – case/switch and nested statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

case/switch <expression> of

 1: <constant 1>

 <statements>

 2: <constant 2>

 <statements>

 3: <statement>

 <statements>

 else:

 <statements>

endcase /endswitch

Case/switch input_num of

 1:

 print, ‘one’

 2:

 print, ‘two’

 (x GE 1):

 print, ‘three’

 else:

 print, ‘Enter a value between 1 and 3’

endcase /endswitch

1

0

1

0

1

1

1

0

1

0

ITERATION Statement

EIS1 – for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for <index> = <start> do <increment>

for k = 0, n-1 do begin

1

Center for Systems and Software Engineering 2014

8

 <statements>

endfor

 C = A[k]

endfor

for x = 1, 4 do print, x, x+2

1

0

2

EIS2 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while <boolean expression> do

 <statements>

endwhile

n = 1

while (n < 100) do

 n = n + 1

endwhile

1

1

1

0

 EIS3 – repeat

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
repeat begin

 <statements>

endrep until <statements>

A = 1

B = 10

repeat begin

 A = A * 4

endrep until A GT B

1

1

0

1

1

EIS4 – foreach

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

foreach <elm>, <list>, <index> do begin

 <statements>

endforeach

list = LIST(77.97, ‘Hiromi’, [2,4,6])

foreach elm, list, index do begin

 print, ‘Value = ‘, elm

endforeach

1

1

1

0

JUMP Statement

EJS1 – goto

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

goto If (i == 0) then

 goto, JUMP1

endif

JUMP1: print, ‘Do Something’

1

1

0

1

EJS2 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break

if (i > 10) then

 break

endif

1

1

0

Center for Systems and Software Engineering 2014

9

EJS3 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue

If(i < 5) then

 continue

endif

1

1

0

EXPRESSION Statement

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

function <function_name> ::P1, P2, …, Pn

 <statements>

 return, <statement>

end

function Init_X::P1, P2

 x = P1 + P2

 return, x

end

1

1

1

0

 EES2 – procedure call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
pro <procedure_name> ::P1, P2, …, Pn

 <statements>

end

pro Init_X::P1, P2

 x = P1 + P2

end

1

1

0

EES3 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>

X = [1 2 3 4]

Y = X

1

1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

@(<file name>)

@do_something

1

Center for Systems and Software Engineering 2014

10

4. Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program. It is measured for each

function, procedure, or method according to each specific program language. This metric indicates the risk of program

complexity and also determines the number of independent test required to verify program coverage.

The cyclomatic complexity is computed by counting the number of decisions plus one for the linear path. Decisions are

determined by the number of conditional statements in a function. A function without any decisions would have a

cyclomatic complexity of one. Each decision such as an if condition or a for loop adds one to the cyclomatic complexity.

The cyclomatic complexity metric v(G) was defined by Thomas McCabe. Several variations are commonly used but are

not included in the UCC. The modified cyclomatic complexity counts select blocks as a single decision rather than

counting each case. The strict or extended cyclomatic complexity includes boolean operators within conditional

statements as additional decisions.

Cyclomatic Complexity Risk Evaluation

1-10 A simple program, without much risk

11-20 More complex, moderate risk

21-50 Complex, high risk program

> 50 Untestable program, very high risk

For IDL, the following table lists the conditional keywords used to compute cyclomatic complexity.

Statement CC Count Rationale

if +1 if adds a decision

else 0 Decision is at the if statement

switch +1 per item Each item adds a decision – not the switch, if condition is a statement,

then an additional decision is added

switch else 0 Decision is at the item statements

case +1 per item Each item adds a decision – not the case, if condition is a statement,

then an additional decision is added

case else 0 Decision is at the item statements

for +1 for adds a decision at loop start

foreach +1 foreach adds a decision at loop start

while +1 while adds a decision at loop start

repeat +1 while adds a decision at loop start

