

MATLAB CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

August , 2012

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

7/26/2012 1.0 Original Release CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.3 Compiler directives

7

7

7

8

8

9

9

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon,

comma, or a carriage return. Logical SLOC are not sensitive to format and style conventions, but they are

language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

MATLAB uses implicitly defined types so that there are no data declaration statements.

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the MATLAB keywords that denote compiler directive lines:

import

Table 1 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Matlab single line comment delimiter is “%”. Anything included between “%{“ and “%}” is considered part

of a block comment. A whole comment line may span one line and does not contain any compliable source

code. An embedded comment can co-exist with compliable source code on the same physical line. Banners

and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, elseif, switch)

� Iteration statements (for, while, parfor)

� Error control statements (try-catch block)

� Jump statements (break, continue)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Compiler Directives 2 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 3 Not Included (NI)

 Embedded 4 NI

 Banners 5 NI

 Empty Comments 6 NI

Blank Lines 7 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “while”, “parfor”, or “if”

statement

1 Count Once Loops and conditionals are

independent statements.

R02 Statements ending by a

semicolon or comma

2 Count Once Semicolons and commas

within matrix assignments

are not counted.

R03 Line terminated by new line

character and last symbol is not

ellipsis “…”

3 Count Once End of command

R04 Compiler Directive 4 Count once per directive

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, elseif, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if <boolean expression>

 <statements>

end

if <boolean expression>

 <statements>

else

 <statements>

end

if <boolean expression>

 <statements>

elseif <boolean expression>

 <statements>

.

.

else

 <statements>

end

NOTE: complexity is not considered, i.e.

multiple “&&” or “||” as part of the

expression.

if rem(4, 2) == 0

 disp(‘4 is even’)

end

if x > 0

 disp (‘x is positive’)

else

 disp (‘x is zero’)

end

if x > 0

 disp (‘x is positive’)

elseif x < 0

 disp (‘x is negative’)

else

 disp (‘x is zero’)

end

if x != 0 && x > 0

 disp (‘x’)

end

1

1

0

1

1

0

1

0

1

1

1

1

0

1

0

1

1

0

ESS2 – switch and nested switch statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

switch <expression>

 case <constant 1>

 <statements>

 case <constant 2>

 <statements>

 case <constant 3>

 <statements>

 otherwise

 <statements>

end

switch input_num

 case -1

 disp (‘negative one’);

 case 0

 disp (‘zero’);

 case 1:

 disp (‘positive one’);

 otherwise

 disp (‘other value’);

end

1

0

1

0

1

0

1

0

1

0

Center for Systems and Software Engineering 2013

8

ESS3 – try-catch

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

try

 <statements>

catch <exception-declaration>

 <statements>

end

try

 fid = fopen(‘abc’, ‘r’);

 d_in = fread(fid);

catch exception

 rethrow(exceptioin)

end

1

1

1

1

1

0

ITERATION Statement

EIS1 – for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for <index> = <start>:<increment>:<end>

 <statements>

end

for k = 1:2:24

 C{k} = k * 2;

end

for x = 1:10 x

end

1

1

0

2

1

EIS2 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while <boolean expression>

 <statements>

end

n = 1;

while prod(1:n) < 1e100

 n = n + 1;

end

1

1

1

0

EIS3 – parfor

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

parfor <index> = <start>:<end>

 <statements>

end

parfor i = 1:length(A)

 B(i) = f(A(i));

end

1

1

0

JUMP Statement

EJS1 – return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return If i == 0

 return;

end

1

1

0

Center for Systems and Software Engineering 2013

9

EJS2 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break

if i > 10

 break;

end

1

1

0

EJS3 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue

if i < 5

 continue;

end

1

1

0

EXPRESSION Statement

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> (<parameters>)

surf(peaks)

1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>

X = [1 2 3 4];

Y = X;

1

1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

import <package>

Import packagename.ClassName 1

