O,

313 MATLAB CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

August , 2012

Center for Systems and Software Engineering | 2013

Revision Sheet

Date

Version

Revision Description

Author

7/26/2012

1.0

Original Release

CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.13 Jump Statements 8
3.14 Expression Statements 9
3.3 Compiler directives 9

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC - Lines of code intended to measure “statements”, which normally terminate by a semicolon,
comma, or a carriage return. Logical SLOC are not sensitive to format and style conventions, but they are
language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

MATLAB uses implicitly defined types so that there are no data declaration statements.

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.

The following table lists the MATLAB keywords that denote compiler directive lines:

| import |
Table 1 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

Matlab single line comment delimiter is “%”. Anything included between “%{“ and “%}” is considered part
of a block comment. A whole comment line may span one line and does not contain any compliable source
code. An embedded comment can co-exist with compliable source code on the same physical line. Banners

and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:

Selection statements (if, elseif, switch)

Iteration statements (for, while, parfor)

Error control statements (try-catch block)

Jump statements (break, continue)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

An executable line of code may not contain the following statements:

Compiler directives
Whole line comments, including empty comments and banners

Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Compiler Directives 2 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 3 Not Included (NI)
Embedded 4 NI
Banners 5 NI
Empty Comments 6 NI
Blank Lines 7 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “while”, “parfor”, or “if” 1 Count Once Loops and conditionals are
statement independent statements.
R0O2 Statements ending by a 2 Count Once Semicolons and commas
semicolon or comma within matrix assignments
are not counted.
RO3 Line terminated by new line 3 Count Once End of command
character and last symbol is not
ellipsis “...”
RO4 Compiler Directive 4 Count once per directive

Center for Systems and Software Engineering

3. Examples

EXECUTABLE LINES

ESS1 - if, elseif, else and nested if statements

if <boolean expression>
<statements>
end

if <boolean expression>
<statements>

else
<statements>

end

if <boolean expression>
<statements>

elseif <boolean expression>
<statements>

else
<statements>
end

NOTE: complexity is not considered, i.e.
multiple “&&” or “||” as part of the
expression.

ifrem(4, 2) ==
disp(‘4 is even’)
end

ifx>0

disp (‘x is positive’)
else

disp (‘x is zero’)
end

ifx>0

disp (‘x is positive’)
elseif x<0

disp (‘x is negative’)
else

disp (‘x is zero’)
end

ifx!=0&&x>0
disp (‘X’)
end

o

ORrR O R R R R OrRr O R K

B

ESS2 — switch and nested switch statements

switch <expression>
case <constant 1>
<statements>
case <constant 2>
<statements>
case <constant 3>
<statements>
otherwise
<statements>
end

switch input_num
case -1
disp (‘negative one’);
case 0
disp (‘zero’);
case 1:
disp (‘positive one’);
otherwise
disp (‘other value’);

end

OrRrPrORFrRORFRPrRORFrROLR

Center for Systems and Software Engineering | 2013

ESS3 — try-catch

try try 1
<statements> fid = fopen(‘abc’, ‘r’); 1
catch <exception-declaration> d_in = fread(fid); 1
<statements> catch exception 1
end rethrow(exceptioin) 1
end 0

EIS1 —for
for <index> = <start>:<increment>:<end> fork=1:2:24 1
<statements> C{k}=k*2; 1
end end 0
forx=1:10x 2
end 1
EIS2 — while

while <boolean expression> n=1; 1
<statements> while prod(1:n) < 1e100 1
end n=n+1; 1
end 0

EIS3 — parfor

parfor <index> = <start>:<end> parfor i = 1:length(A) 1
<statements> B(i) = f(A(i)); 1
end end 0

EJS1 —return

return Ifi== 1
return; 1
end 0

Center for Systems and Software Engineering | 2013

EJS2 — break

break ifi>10 1
break; 1
end 0

EJS3 - continue

continue ifi<5 1
continue; 1
end 0

EES1 - function call

<function_name> (<parameters>) surf(peaks) 1

EES2 - assignment statement

<name> = <value> X=[1234]; 1
Y=X; 1

COMPILER DIRECTIVES

CDL1 - directive types

import <package> Import packagename.ClassName 1

