O,

111 X-Midas CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

October , 2009

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
10/30/2009 1.0 Original Release CSSE
1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.13 Jump Statements 9
3.14 Expression Statements 9
3.2 Declaration lines 10
3.3 Compiler directives 10

Center for Systems and Software Engineering | 2013

1. Definitions

NOTE: This document covers both the X-Midas macro language as well as the similar updated NeXtMidas macro

language. Items denoted by (XM) indicate X-Midas exclusive keywords, and items denoted by (NM) indicate

NeXtMidas exclusive keywords.

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC - Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly, X-Midas), etc. Logical SLOC are not sensitive to format
and style conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the X-Midas keywords that denote data declaration lines:

local (XM)
global (NM)
Table 1 Data Declaration Types

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.

The following table lists the X-Midas keywords that denote compiler directive lines:

‘ include
Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

II'II

X-Midas comment delimiter is A whole comment line may span one line and does not contain any
compilable source code. An embedded comment can co-exist with compilable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:

= Selection statements (if)

= |teration statements (loop, while, forall)

= Jump statements (return, goto, break, continue)

= Expression statements (macro/subroutine/procedure calls, assignment statements, operations,
etc.)

An executable line of code may not contain the following statements:

= Compiler directives

= Data declaration (data) lines

= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 “loop”, “while” or “if” 1 Count Once
statement

R0O2 Data declaration and data 2 Count Once
assighment

RO3 Jump statement 3 Count once per keyword

RO4 | Macro/subroutine/procedure 4 Count once per call

call
RO5 Keyword statement 5 Count once per statement

Center for Systems and Software Engineering

3. Examples

EXECUTABLE LINES

ESS1 - if, elseif, else and nested if statements

if <boolean expression>
<statements>

if <boolean expression>
<statements>

else
<statements>

endif

if <boolean expression>
<statements>

elseif <boolean expression>
<statements>

else
<statements>
endif

if <boolean expression> then <statement>
NOTE: complexity is not considered, i.e.

multiple “and” or “or” as part of the
expression.

if xneqO
say “non-zero

4

ifxgt0

say “positive”
else

say “negative”
endif

ifxeqO

say “zero”
elseif xgt 0

say “positive”

else
say “negative”
endif

if x neq 0 then say “positive”

[EE

= OrRr O R K

= O

ESS2 — trap

trap error <label name>

endmode (or stop)

trap error FOUNDERR

endmode
label FOUNDERR
error “Found an error!”

o

Center for Systems and Software Engineering | 2013

EIS1 - loop

loop <iterations> <count> loop 10 count 1
<statements> say count 1
endloop endloop 0

EIS2 — empty statements (could be used for time delays)

loop <iterations> <count> loop 10 count 1
endloop endloop
EIS3 — while

while <boolean expression> while i It 10 1
<statements> say “Mi” 1
endwhile calciil+ 1
endwhile 0

EIS4 - forall

forall #=<start>:<end>;<inc> <command> | forall #=1:21;2 calcnn # + 2

EIS5 — do (NM)

do <count> <start> <end> <inc> docountl171 1
<statements> say "The count is at Acount" 1
enddo enddo 0

EIS6 — foreach (NM)

foreach <item> <func> <in> foreach key INTABLE mytable 1
<statements say "Key “key = *"mytable. key" 1
endfor endfor 0

Center for Systems and Software Engineering | 2013

EJS1 —return

return return 1

EJS2 — goto, label

goto <label name> label loop1 0
calcxx 1+ 1
if x It y then goto loop1 2

label <label name>

EJS3 — break

break if i gt 10 then break 2

EJS4 — continue

continue continue if i gt 10 then continue

EES1 — macro call

<macro name> <parameters> read_file name 1

EES2 — subroutine call

call <subroutine name> call read_file name 1

EES3 - procedure call

jump <procedure name> jump read_file name 1

Center for Systems and Software Engineering | 2013

EES4 - assighment statement

results <name> <value> results x 1 1

DECLARATION OR DATA LINES

DDL1 - variable declaration (XM)

local <type>:<name> local A:param 1
local amount, sum, total 1

DDL2 - variable declaration (NM)

global <type>:<name> global A:param 1
global amount, sum, total 1

COMPILER DIRECTIVES

CDL1 - directive types

include <macro name> include %MACRO 1

10

