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1. Definitions 

NOTE: This document covers both the X-Midas macro language as well as the similar updated NeXtMidas macro 

language.  Items denoted by (XM) indicate X-Midas exclusive keywords, and items denoted by (NM) indicate 

NeXtMidas exclusive keywords. 

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the 

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is 

also used to calculate productivity and other measurements. 

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending 

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment 

line. 

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon 

(C/C++, Java, C#) or a carriage return (VB, Assembly, X-Midas), etc. Logical SLOC are not sensitive to format 

and style conventions, but they are language-dependent. 

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or 

compiler to interpret other elements of the program. 

The following table lists the X-Midas keywords that denote data declaration lines: 

local (XM) 

global (NM) 

Table 1  Data Declaration Types 

 
1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to 

compile. 

The following table lists the X-Midas keywords that denote compiler directive lines: 

include 

Table 2  Compiler Directives 

 

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs, 

form feed, carriage return, line feed, or their derivatives). 

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific 

comment delimiter. 

X-Midas comment delimiter is “!”.  A whole comment line may span one line and does not contain any 

compilable source code.  An embedded comment can co-exist with compilable source code on the same 

physical line.  Banners and empty comments are treated as types of comments. 
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1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a 

breakpoint can be set in a debugging tool.  An instruction can be stated in a simple or compound form. 

• An executable line of code may contain the following program control statements: 

� Selection statements (if) 

� Iteration statements (loop, while, forall) 

� Jump statements (return, goto, break, continue) 

� Expression statements (macro/subroutine/procedure calls, assignment statements, operations, 

etc.) 

• An executable line of code may not contain the following statements: 

� Compiler directives 

� Data declaration (data) lines 

� Whole line comments, including empty comments and banners 

� Blank lines 
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2. Checklist for source statement counts 

PHYSICAL SLOC COUNTING RULES 

MEASUREMENT UNIT 
ORDER OF 

PRECEDENCE 
PHYSICAL SLOC COMMENTS 

Executable Lines 1 One Per line Defined in 1.8 

Non-executable Lines    

Declaration (Data) lines 2 One per line Defined in 1.4 

Compiler Directives 3 One per line Defined in 1.5 

Comments   Defined in 1.7 

         On their own lines 4 Not Included (NI)  

         Embedded 5 NI  

         Banners 6 NI  

         Empty Comments 7 NI  

Blank Lines 8 NI Defined in 1.6 

 

LOGICAL SLOC COUNTING RULES 

NO. STRUCTURE 
ORDER OF 

PRECEDENCE 
LOGICAL SLOC RULES COMMENTS 

R01 “loop”, “while” or “if” 

statement 

1 Count Once   

R02 Data declaration and data 

assignment 

2 Count Once   

R03 Jump statement 3 Count once per keyword   

R04 Macro/subroutine/procedure 

call 

4 Count once per call   

R05 Keyword statement 5 Count once per statement  
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3. Examples 

EXECUTABLE LINES 

 

SELECTION Statement 

 

ESS1 – if, elseif, else and nested if statements 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

if <boolean expression> 

       <statements> 

 

if <boolean expression> 

       <statements> 

else 

       <statements> 

endif 

 

if <boolean expression> 

      <statements> 

elseif <boolean expression> 

      <statements> 

. 

. 

else 

       <statements> 

endif 

 

if <boolean expression> then <statement> 

 

NOTE: complexity is not considered, i.e. 

multiple “and” or “or” as part of the 

expression. 

 

 

if x neq 0 

    say “non-zero” 

 

if x gt 0 

    say “positive” 

else 

    say “negative” 

endif 

 

if x eq 0 

    say “zero” 

elseif x gt 0 

    say “positive” 

. 

. 

else 

    say “negative” 

endif 

 

if x neq 0 then say “positive” 

 

1 

1 

 

1 

1 

0 

1 

0 

 

1 

1 

1 

1 

 

 

0 

1 

0 

 

2 

 

 

 

ESS2 – trap 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

trap error <label name> 

. 

. 

endmode (or stop) 

 

trap error FOUNDERR 

. 

. 

endmode 

label FOUNDERR 

error “Found an error!” 

 

1 

 

 

1 

0 

1 
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ITERATION Statement 

 

EIS1 – loop 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

loop <iterations> <count> 

       <statements> 

endloop 

 

loop 10 count  

    say count 

endloop 

 

1 

1 

0 

 

EIS2 – empty statements (could be used for time delays) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

loop <iterations> <count> 

endloop 

 

loop 10 count  

endloop 

 

1 

 

 

EIS3 – while 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

while <boolean expression> 

       <statements> 

endwhile 

 

while i lt 10 

    say “^i” 

    calc i i 1 + 

endwhile 

 

1 

1 

1 

0 

 

EIS4 – forall 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

forall #=<start>:<end>;<inc>  <command> 

 

forall #=1:21;2 calc n n # + 

 

2 

 

EIS5 – do (NM) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

do <count> <start> <end> <inc> 

       <statements> 

enddo 

 

do count 1 7 1 

    say "The count is at ^count" 

enddo 

 

1 

1 

0 

 

EIS6 – foreach (NM) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

foreach <item> <func> <in> 

       <statements 

endfor 

 

foreach key INTABLE mytable 

    say "Key ^key = ^mytable.^key" 

endfor 

 

1 

1 

0 
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JUMP Statement 

 

EJS1 – return 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

return 

 

return 

 

1 

 

EJS2 – goto, label 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

goto <label name> 

. 

. 

label <label name> 

 

 

label loop1 

calc x x 1 + 

if x lt y then goto loop1 

 

 

0 

1 

2 

EJS3 – break 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

break 

 

if i gt 10 then break 

 

2 

 

EJS4 – continue 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

continue 

 

continue 

 

if i gt 10 then continue 

 

 

EXPRESSION Statement 

 

EES1 – macro call 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

<macro name>  <parameters>      read_file name 

 

1 

 

EES2 – subroutine call 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

call <subroutine name> 

 

call read_file name 

 

1 

 

EES3 – procedure call 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

jump <procedure name> 

 

jump read_file name 

 

1 
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EES4 – assignment statement 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

results <name> <value> 

 

 

results x 1 

 

1 

 

 

DECLARATION OR DATA LINES 

DDL1 – variable declaration (XM) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

local <type>:<name> 

 

local A:param 

local amount, sum, total 

 

1 

1 

 

DDL2 – variable declaration (NM) 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

global <type>:<name> 

 

global A:param 

global amount, sum, total 

 

1 

1 

 

 

 

COMPILER DIRECTIVES 

CDL1 – directive types 

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT 

 

include <macro name> 

 

include %MACRO 

 

1 

 

 


