

X-Midas CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

October , 2009

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

10/30/2009 1.0 Original Release CSSE

1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

8

9

9

10

10

Center for Systems and Software Engineering 2013

4

1. Definitions

NOTE: This document covers both the X-Midas macro language as well as the similar updated NeXtMidas macro

language. Items denoted by (XM) indicate X-Midas exclusive keywords, and items denoted by (NM) indicate

NeXtMidas exclusive keywords.

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly, X-Midas), etc. Logical SLOC are not sensitive to format

and style conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the X-Midas keywords that denote data declaration lines:

local (XM)

global (NM)

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the X-Midas keywords that denote compiler directive lines:

include

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

X-Midas comment delimiter is “!”. A whole comment line may span one line and does not contain any

compilable source code. An embedded comment can co-exist with compilable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if)

� Iteration statements (loop, while, forall)

� Jump statements (return, goto, break, continue)

� Expression statements (macro/subroutine/procedure calls, assignment statements, operations,

etc.)

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “loop”, “while” or “if”

statement

1 Count Once

R02 Data declaration and data

assignment

2 Count Once

R03 Jump statement 3 Count once per keyword

R04 Macro/subroutine/procedure

call

4 Count once per call

R05 Keyword statement 5 Count once per statement

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, elseif, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if <boolean expression>

 <statements>

if <boolean expression>

 <statements>

else

 <statements>

endif

if <boolean expression>

 <statements>

elseif <boolean expression>

 <statements>

.

.

else

 <statements>

endif

if <boolean expression> then <statement>

NOTE: complexity is not considered, i.e.

multiple “and” or “or” as part of the

expression.

if x neq 0

 say “non-zero”

if x gt 0

 say “positive”

else

 say “negative”

endif

if x eq 0

 say “zero”

elseif x gt 0

 say “positive”

.

.

else

 say “negative”

endif

if x neq 0 then say “positive”

1

1

1

1

0

1

0

1

1

1

1

0

1

0

2

ESS2 – trap

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

trap error <label name>

.

.

endmode (or stop)

trap error FOUNDERR

.

.

endmode

label FOUNDERR

error “Found an error!”

1

1

0

1

Center for Systems and Software Engineering 2013

8

ITERATION Statement

EIS1 – loop

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

loop <iterations> <count>

 <statements>

endloop

loop 10 count

 say count

endloop

1

1

0

EIS2 – empty statements (could be used for time delays)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

loop <iterations> <count>

endloop

loop 10 count

endloop

1

EIS3 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while <boolean expression>

 <statements>

endwhile

while i lt 10

 say “^i”

 calc i i 1 +

endwhile

1

1

1

0

EIS4 – forall

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

forall #=<start>:<end>;<inc> <command>

forall #=1:21;2 calc n n # +

2

EIS5 – do (NM)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

do <count> <start> <end> <inc>

 <statements>

enddo

do count 1 7 1

 say "The count is at ^count"

enddo

1

1

0

EIS6 – foreach (NM)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

foreach <item> <func> <in>

 <statements

endfor

foreach key INTABLE mytable

 say "Key ^key = ^mytable.^key"

endfor

1

1

0

Center for Systems and Software Engineering 2013

9

JUMP Statement

EJS1 – return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return

return

1

EJS2 – goto, label

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

goto <label name>

.

.

label <label name>

label loop1

calc x x 1 +

if x lt y then goto loop1

0

1

2

EJS3 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break

if i gt 10 then break

2

EJS4 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue

continue

if i gt 10 then continue

EXPRESSION Statement

EES1 – macro call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<macro name> <parameters> read_file name

1

EES2 – subroutine call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

call <subroutine name>

call read_file name

1

EES3 – procedure call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

jump <procedure name>

jump read_file name

1

Center for Systems and Software Engineering 2013

10

EES4 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

results <name> <value>

results x 1

1

DECLARATION OR DATA LINES

DDL1 – variable declaration (XM)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

local <type>:<name>

local A:param

local amount, sum, total

1

1

DDL2 – variable declaration (NM)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

global <type>:<name>

global A:param

global amount, sum, total

1

1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

include <macro name>

include %MACRO

1

