
UCC Release Notes v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

UCC Release Notes
UCC v.2018.07

Copyright (C) 1998 - 2018

University of Southern California

Center for Systems and Software Engineering

UCC Release Notes v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

1

1 Introduction

This document provides the release notes for the UCC v.2018.07. Unified Code Count (UCC) is
a code metrics tool that allows the user to count physical and logical software lines of code, compare
and collect logical differentials between two versions of source code of a software product, and obtain
Cyclomatic Complexity results. With the counting capabilities, users can generate the physical,
logical SLOC counts, and other sizing information such as comment and keyword counts of the
target program. The differencing capabilities allow users to count the number of added/new,
deleted, modified, and unmodified logical SLOC of the current version in comparison with the
previous version. The Cyclomatic Complexity results are based on McCabe’s research on this metric.

This release supports various languages including Ada, ASP/ASP.NET, Assembly, Bash, C/C++, C
Shell, COBOL, ColdFusion, ColdFusion Script, CSS, C#, DOS Batch, Fortran, HTML, IDL, Java,
JavaScript, JSP, Makefile, MATLAB, Midas, NeXtMidas, Objective C, Pascal, Perl, PHP, Python,
Ruby, Scala, SQL, VB, VBScript, Verilog, VHDL, XML, and X-Midas. It also supports physical
counting of data files.

2 Compatibility Notes

UCC v.2018.07 is released in C++ source code that allows users to compile and run on various
platforms. This release has been tested on Windows using MS Visual Studio, Cygwin, and MinGW,
Macintosh OS X and on Unix/Linux using the g++ compiler.

The UCC v.2018.07 does not support PL/1 and Jovial, although these may be included in future
releases. For the need of counting of code in these languages, users may consider using the
CodeCount Tools Release 2007.07, which does not provide the differencing capability but uses the
counting rules compatible to those of UCC v.2018.07.

3 Requirements

Minimum Software Requirements:

• Compiler: a compatible C++ compiler that can load common C++ libraries including IO
and STL, such as MS Visual Studio, MinGW, and g++.

• Qt 5.7.0 or Qt 5.10.1 and Qt Creator 4.0.2: Optional. Required to use the GUI front-end
and allows faster performance using threads.

• Boost C++ Library: Optional. Maybe used if not building with Qt. Gives faster
performance when using threads.

UCC Release Notes v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

2

• Operating systems: any platforms that can compile and run a C++ application. The
software has been tested on Unix, Linux, Solaris, Mac OS X and Windows XP, 7, 8 and
10.

Minimum Hardware Requirements:

• RAM: 512 MB. Recommended: 1024 MB.
• HDD: 100 MB available. Recommended: 200 MB available.

4 Changes and Upgrades

This section describes main changes and upgrades to the tool since the release v.2017.01.

1) Bug Fixes:
a. Fixed issue where UCC was not working for Scala.
b. Fixed CAdaCouter.cpp bug that accessed invalid stack elements.
c. Fixed issues with incorrect counting of quotes.
d. Fixed issue with differencing not returning values for Unmodified lines.

2) Feature Enhancements:

a. Added Maintainability Index calculation. This feature is limited to these

languages: C/C++, Java and C#.
b. Added Function-level Differencing. To be used using the command line

argument “-funcDiff”. This has to be used along with -d option.
c. Re-implemented the extfile functionality in the GUI to allow using and saving

files with custom extensions to language mappings.
d. New compilation flag added for g++ in Unix makefile.

5 Performance Notes

Due to the addition of Maintainability Index calculations, we have seen that Release v2018.07
runs slightly slower than the Release v2017.01. The below results are from a test setup on an
Intel(R) Core(TM) i7-6500U CPU clocked at 2.50 GHz laptop running Windows 10 64-bit with
12 GB of RAM.

UCC Release Notes v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

3

Run Time Comparison

2017.01 Run Time
Test: Differencing between Linux-4.7.10 and Linux-4.8.10 source files.

1 threads

Result: 4337 seconds or 72 minutes 17 seconds total time

2 threads

Result: 4204 seconds or 70 minutes 4 seconds total time

5 threads

Result: 2517 seconds or 41 minutes 57 seconds total time

2018.04 Run Time
Test: Differencing between Linux-4.7.10 and Linux-4.8.10 source files.

1 threads

Result: 4848 seconds or 80 minutes 48 seconds total time

2 threads

Result: 4648 seconds or 77 minutes 28 seconds total time

5 threads

Result: 2667 seconds or 44 minutes 27 seconds total time

UCC Release Notes v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

4

6 Known Issues and Limitations

Issue
1 For JavaScript code, the tool does not count the statement that is not

terminated by a semicolon.
2 The tool only detects and handles C# and VB as code-behind languages for

the ASP.NET.
3 Users have reported that when large numbers of files or files with large

SLOC counts are run, UCC would take several hours to process, or would
hang. To improve the performance, users may choose to use the –nodup
flag, which disables duplicate file separation; duplicates are counted and
reported along with original files. In the situation where UCC hangs, the
problem is that the host computer has run out of memory. A workaround is
to break the input file list into several lists and process in multiple runs.
Additional work is being done in this area, and more improvements may be
available in a future release.

If you suspect your process is hanging due to memory limitations, it would be
appreciated it if you would report the number of files, total file size, and the
host computer’s memory size to UnifiedCodeCount@gmail.com.

4 The UCC is designed to process well-formed, compilable code, and does not
check to see if the provided files are compilable. Files that contain software
that is not compilable, or is in non-standard format, may not process
correctly.

5 The Fortran counter uses the FORTRAN90 and above format for the
continuation character being an & at the end of the line. FORTRAN77 and
lower versions used a non-zero character in column 6 as the continuation
character. There are plans to develop a separate counter for FORTRAN77
and lower in the future.

6 Due to the recent addition of cyclomatic complexity metrics, UCC is able to
handle slightly smaller loads than the 2013.04 version. For counting
purposes, errors can be avoided by using the –nocomplex flag. The UCC
development team is working on optimizing the performance to handle larger
input.

7 When function differencing is enabled, UCC performance is considerably
slower than when the option is disabled.

8 Due to additional maintainability index calculation, UCC runs slower than
Release 2017.01.

