
UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

UCC User Manual
UCC v.2018.07

Copyright (C) 1998 - 2018

University of Southern California

Center for Systems and Software Engineering

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

i

Version History

Date Author Version Changes
01/23/2007 Marilyn Sperka 0.1 Initial Version
01/30/2007 Vu Nguyen 0.3 Reviewed and updated installation

procedures and terminologies to ensure
they are consistent with the readme file.

02/03/2009 Vu Nguyen 0.4 Added an instruction to include –DUNIX
in the compile line on Unix/Linux.

10/26/2009 Vu Nguyen 1.0 Updated for Release 2009.10
01/12/2010 Marilyn Sperka 1.1 Reformatted and minor edits
06/10/2010 Marilyn Sperka

Vu Nguyen
2.0 Updated for UCC v.2010.06

03/10/2011 Marilyn Sperka 2.3 Updated for UCC v 2011.03
05/02/2011 Marilyn Sperka 2.4 Updated for UCC v 2011.05
10/28/2011 Marilyn Sperka 2011.10B Updated for UCC v2011.10B (B=Beta

release)
04/30/2012 Marilyn Sperka

Ryan Pfeiffer
2011.10 Updated for UCC v2010.10 release

03/28/2013 Ryan Pfeiffer 2013.04B Updated for UCC v2013.04B
04/08/2014 Ryan Pfeiffer 2013.04 Updated for UCC v2013.04
08/09/2014 Anandi Hira 2014.08 Updated for UCC v2014.08: Included

GUI set up instructions, and GUI
specifications

10/16/2014 Tao Li 2014.08 Update for UCC v2014.08: Included
handling spaces in path of list file and the
path for the file listed in list file.

12/02/2014 Helder Faria e Dias 2014.08 Updated for UCC v2014.08: Included -O3
compilation flag on compilation
instructions.

12/05/2014 Helder Faria e Dias 2014.08 Updated for UCC v2014.08: Added –
visualdiff switch for visual differencing
results.

5/15/2015 Anandi Hira 2015.12 Updated for UCC v2015.12: Made version
updates

9/22/2015 Anandi Hira 2015.12 Updated for UCC v2015.12: Added
additional features, such as handling
prolonged and no extensions in extfile

12/11/2015 Randy Maxwell 2015.12 Updated UCC for v2015.12: Several neew
features, improvements, and new reports

12/28/2015 Anandi Hira 2015.12 Updated UCC for v2015.12: Made several
formatting changes and added updates.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

ii

12/14/2016 Anandi Hira 2016.12 Updated for UCC v2016.12: Made
formatting changes and added several
updates and new section about error,
exceptions and warnings.

7/2/18 Anandi Hira 2018.07 Updated for UCC v2018.07: add function-
level differencing and Maintainability
Index features information.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

1

Table of Contents
1 Introduction .. 4

1.1 Product Overview .. 4

2 System Requirements .. 4

2.1 Hardware ... 4

2.2 Operating Systems ... 5

2.3 Compilers Supported .. 5

2.4 Additional Software .. 5

3 Building UCC Source Code ... 5

3.1 Software Download ... 5

3.2 Compilation .. 5

3.2.1 Qt for the GUI front-end ... 6

3.2.2 Visual Studio ... 6

3.2.3 3.2.2.2 MinGW .. 7

3.2.4 3.2.2.3 g++ ... 7

3.2.5 Boost Library ... 7

4 Running UCC ... 9

4.1 Command Line Specification Summary .. 9

4.2 Counting and Differencing Details and Examples .. 12

4.2.1 Counting Source Files .. 12

4.2.2 Differencing Baselines .. 14

5 Output Files ... 15

6 Counting Standards .. 17

7 Terminology Explanation.. 18

7.1 File Extensions .. 18

7.2 Basic Assumption and Definitions ... 19

7.2.1 Data Files ... 19

7.2.2 Source Files ... 19

7.2.3 SLOC Definitions and Counting Rules .. 19

7.2.4 TAB ... 19

7.2.5 Blank Line ... 19

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

2

7.2.6 Total Sizing.. 20

7.2.7 Keyword Count ... 20

8 Switch Usage Detail ... 20

8.1 –v.. 21

8.2 –d ... 21

8.3 –i1 fileListA.txt .. 22

8.4 –i2 fileListB.txt .. 23

8.5 –t # ... 23

8.6 –funcDiff ... 23

8.7 –visualdiff .. 23

8.8 –dir <dirA> [<dirB>] [filespecs …]... 24

8.9 –threads # .. 25

8.10 –tdup # .. 26

8.11 –trunc # ... 26

8.12 –cf .. 26

8.13 –extfile <extfilename> ... 27

8.13.1 File Extension Mapping Names ... 28

8.13.2 Counting Objective C files ... 29

8.13.3 Data file counting ... 29

8.14 –cc4enable ... 30

8.15 –nowarnings .. 30

8.16 –nouncounted ... 30

8.17 –ramlimit # .. 30

8.18 –outdir <dirname> .. 31

8.19 –unified ... 31

8.20 –ascii .. 31

8.21 –legacy .. 31

8.22 –nodup .. 31

8.23 –nocomplex ... 32

8.24 –nolinks ... 32

8.25 –header <filename> ... 32

8.26 –noheader .. 32

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

3

8.27 –filespecs <filespecs.txt> .. 32

9 Performance Issues .. 32

9.1 Compiler Optimization .. 33

9.1.1 Microsoft Visual Studio .. 33

9.1.2 GNU g++ ... 33

9.2 UCC Switches Affecting Performance ... 34

9.2.1 –threads # .. 34

9.2.2 –ramlimit #.. 34

9.2.3 -trunc # .. 34

9.2.4 -nodup ... 35

9.2.5 -nocomplex .. 35

9.3 Large Jobs .. 35

9.3.1 Memory Limitations ... 35

9.3.2 Process One or a Few Languages at a Time ... 36

9.3.3 Divide and Conquer ... 36

9.3.4 Preserving Output Files from Multiple Runs .. 36

9.3.5 Difference in Two Steps ... 37

9.3.6 Long Line Truncation .. 37

10 Language Specific Information ... 37

10.1 Ruby ... 37

10.2 Fortran ... 37

10.3 JavaScript ... 37

11 Errors, Exceptions & Warnings ... 37

11.1 Low on RAM ... 38

11.2 Crashes .. 38

11.3 Signals .. 39

11.4 Stack Dumps ... 39

11.5 Errors ... 40

11.6 Warnings ... 40

12 References .. 40

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

4

1 Introduction

This document provides information for using the UCC tool version 2018.07.

1.1 Product Overview

Most software cost estimation models including the COCOMO® model require some sizing of
software code as an input. Ensuring consistency across independent organizations in the rules used
to count software cost code is often difficult to achieve. To that end, the USC Center for Systems
and Software Engineering (CSSE) has developed and released a code counting toolset called
CodeCount to support sizing software code for historical data collection, cost estimation, and
reporting purposes. This toolset is a collection of tools designed to automate the collection of source
code sizing information. It implements the popular code counting standards published by SEI [1]
and adapted by the COCOMO® model [2]. Logical and physical source lines of code (SLOC) are
among the metrics generated by the toolset.

Unified Code Count (UCC) is a unified and enhanced version of the CodeCount toolset. It is a
code counting and differencing tool that unifies the source counting capabilities of the previous
CodeCount tools and source differencing capabilities of the Difftool. It allows the user to count,
compare, and collect logical differentials between two versions of the source code of a software
product. The differencing capabilities allow users to count the number of added/new, deleted,
modified, and unmodified logical SLOC of the current version in comparison with the previous
version. With the counting capabilities, users can generate the physical and logical SLOC counts,
and other sizing information such as complexity, cyclomatic complexity, comment and keyword
counts of the target program.

The UCC tool is provided in C++ source code, and may be used as is, or modified and further
distributed subject to certain limitations. The user is responsible for compiling and using the
executable version.

2 System Requirements

Note: with large files or baselines, long run time and hanging may be experienced. Refer to Section
9.3 for performance issues.

2.1 Hardware

• RAM: 512 MB. Recommended: 1024 MB. Larger RAM will be able to process larger sets of
files.

• HDD: 100 MB available. Recommended: 200 MB available.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

5

• (Optional) Multiple CPU cores for multithreaded capability.

2.2 Operating Systems

• Linux
• Unix
• Mac OS X
• Windows XP/7

• Solaris

2.3 Compilers Supported

• MS Visual Studio 2008, 2010, 2012, 2015
• MinGW
• g++
• Eclipse C/C++
• Any ANSII-Standard C++ compiler RAM: minimum 512 MB. Recommended: 1024 MB
• Qt 5.7.0 and Qt Creator 4.0.2 (if using GUI front-end)
• Note: 16-bit C++ compilers are no longer tested for compatibility

2.4 Additional Software

• (Optional) Boost C++ Library 1.48.0 (if using multithreaded capability)

3 Building UCC Source Code

There is no setup package provided for installing the tool.

3.1 Software Download

The user can download the UCC source files from http://csse.usc.edu/ucc_wp.

3.2 Compilation

The UCC tool can be compiled using an ANSII-Standard C++ compiler. The compiler must support
common C++ libraries including IO and STL. UCC is a command-line application, with a GUI
front-end, hence, the package contains the code necessary to run UCC as a command-line
application, and the code needed to run the GUI front-end. A summary of the directory structure
is as follows:

• ucc<version>

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

6

o Counting Rules: This directory contains the documents of how the languages are
being counted, as well as the meaning behind the Cyclomatic Complexity output

o gui: Code specifically needed for the GUI front-end. This code needs to be built in
Qt for the GUI to run (which calls the code in the src directory to run).

o src: The main code containing UCC’s functionality. This directory alone needs to
be compiled to run UCC as a command-line application.

Therefore, using the GUI front-end is optional. UCC can still be run as a command-line application
with the code located in the src directory.

3.2.1 Qt for the GUI front-end

UCC is a command-line application, with a GUI front-end constructed with Qt. Qt is compatible
with Linux, Unix, Mac OS X, and Windows. The following procedure allows for a user to run UCC
using the GUI front-end:

1) Download and install Qt 5.7.0 or Qt 5.10.1 and Qt Creator 4.0.2 from the following website:
http://qt-project.org/downloads

2) If using Cygwin C++ compiler on Windows, rename the Makefile in the ucc parent directory
to Makefile_standard, and Makefile_cygwin to Makefile.

3) Run Qt Creator and on the welcome screen, click on the ‘Open Project’ button. Browse
within the gui directory within the UCC directory structure, and select the ‘gucc.pro’ file.

4) After successful build, a new window will appear with the UCC GUI front-end. All of the
functionalities and run options are made available through the GUI.

3.2.2 Visual Studio

On PC based machines, the user can use Visual Studio 2008, 2010, 2012, or 2015 to compile the
source code by following the procedure:

1) Create an empty project of Project Type Visual C++ and Template Win32 Console
Application. Type in the Project name and Select OK. In the Win32 Application Wizard,
select Applications Settings and then select “Empty Project” check box.

2) Select Project/Add Existing Item. Locate and select all UCC source code files in the src
directory. Click on “Add” to add the selected files. This would add the existing code to
the created project.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

7

3) Open the Properties window and go to the Configuration mode page. The user should
select “Release” mode for compiling. To choose the mode, Click on
Build/Configuration Manager button. Select “Release” from the list “Active Solution
configuration”. Go to the C/C++ section and click “Precompiled Headers”. Make sure
the “Create/Use Precompiled Header” selection is “Not Using Precompiled Headers”.
(*)

4) For Visual Studio 2015, in the Properties, go to Configuration Properties è C/C++ è
Preprocessor è Preprocessor Definitions. In the Preprocessor Definitions, add
CRT_SECURE_NO_WARNINGS.

5) Select Build Solution or use the shortcut Ctrl+Shift+B to compile.

Upon compilation, an executable file will be created in the Release folder.

(*) Please note that Visual Studio by default uses the precompiled header option. The user will get
error messages if this option is not turned off.

3.2.3 3.2.2.2 MinGW

The following command will compile source files stored in the folder src – the below command
demonstrates running the command from src’s parent directory.

g++ ./src/*.cpp -o UCC -DMINGW

Note: the command line option -DMINGW must be provided when using the MinGW compiler.

3.2.4 3.2.2.3 g++

The following command will compile source files stored in the folder src – the below command
demonstrates running the command from src’s parent directory.

g++ ./src/*.cpp -o -std=c++0x UCC -DUNIX -O3

Note: the command line option -DUNIX must be provided on UNIX-based systems, including
Cygwin and Mac OSX. Furthermore, the command line option -O3 is needed to avoid compatibility
issues between Unix-like operating systems.

3.2.5 Boost Library

Note: Boost is not needed for the Qt GUI interface. Users may use multiple threads from the GUI
without installing Boost.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

8

3.2.5.1 Compatibility

The library was successfully built and tested on the following platforms:

• Windows XP, Windows Vista, Windows 7 using MSVC 8.0, 9.0, Visual Studio 2010
• Windows Vista using Intel C++ Compiler 10.1.022, 11.1.048
• Mac OS X using GCC 4.2 and newer
• Ubuntu using clang++ 3.5

The following compilers/platforms are not supported by Boost, and may fail to compile the latest
Boost library:

• MSVC 7.0 and older
• Borland C++ 5.5.1 (free version). Newer versions might or might not work
• GCC 4.0 and older
• Windows 9x, ME, NT4 and older

3.2.5.2 Installation

1. Download and install/compile Boost Library from: http://boost.org/
a. On Mac, can optionally install brew: http://www.brew.sh/ . Then from the

command line, can install boost, using the following command:
brew install boost

By default, Boost will be installed in: /usr/local/Cellar/boost/<version>
b. On Linux (Ubuntu), install Boost using the following command from the

command line: apt-get install libboost-all-dev
By default, Boost will be installed in: /usr/include/boost

c. On Windows, user will need to compile the Boost libraries. The Boost website can
provide further instructions.

2. In UCCThread.h from UCC’s src directory, remove the “//” comment symbol from line 39. Lines
38-40 should look like:

#else
 // Available if Boost thread library installed, compiled, .h included
and linked.
 #define ENABLE_THREADS
#endif

3. Compile UCC with appropriate commands to link to the Boost library
a. On Mac: g++ -stdlib=libc++ -I /usr/local/Cellar/boost/<version>/include

–L /usr/local/Cellar/boost/<version>/lib –lboost_thread-mt –
lboost_regex-mt –lboost_system-mt ./src/*.cpp –o UCC –DUNIX –O3 -pthread

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

9

b. On Linux (Ubuntu): clang++ -I /usr/include/boost/ -lboost_thread –lboost_regex
–lboost_system ./src/*.cpp –o UCC –DUNIX –O3 –pthread

c. On Windows in Visual Studio:

i. Open the Properties window and go to the Configuration page.
ii. The user should select “Release” mode for compiling from

“Build/Configuration Manager” button. Select “Release” from the list
“Active Solution configuration”.

iii. Go to the C/C++ section and click “Precompiled Headers”. Make sure the
“Create/Use Precompiled Header” selection is “Not Using Precompiled
Headers”.

iv. In C++ è General è “Multi-processor Compilation”, make sure the option
“Yes (/MP)” is selected.

v. In “Additional Include Directories”, add “C:\boost_<version>”
vi. In Linker è General è�”Additional Library Directories”, add

“C:\boost_<version>\stage\lib”.
vii. Select Build Solution to compile

4. After UCC is built, use the –threads 2 (or more) command for multiple threads.

4 Running UCC

This document emphasizes how to run UCC from the command line. All of the options mentioned
in Section 4.1 are also available from the GUI.

4.1 Command Line Specification Summary

This section describes the command line format used to run UCC, along with a summary of the
various switches and their usage. Section 8 will describe each switch in detail along with information
on how to tailor the switch usage for various execution requirements as well as performance
implications.

UCC [-v] [-d [-i1 fileListA.txt] [-i2 fileListB.txt] [-t #] [-funcDiff] [-visualdiff]]
[-dir <dirA> [dirB] <filespecs | -filespecs <filespecs.txt>>] [-threads #] [-tdup #]
[-trunc #] [-cf] [-extfile extFile] [-cc4enable] [-nowarnings] [-nouncounted]
[-ramlimit #] [-outdir outDir] [-unified] [-ascii] [-legacy] [-nodup] [-nocomplex] [-
nolinks]

-v Displays the version number of UCC being executed.
-d Runs the differencing function.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

10

-i1 fileListA.txt Allows a custom file containing the list of filenames and/or directories
in Baseline A to be counted if -d is not present or compared if -d is
present. The file is in plain text format, one filename or directory name
per line. If a directory name is specified, the directory is searched
recursively for all countable files. If there is a space in the path, add a
‘\’ before the space.

-i2 fileListB.txt Allows a custom file containing the list of filenames and/or directories
in Baseline B. This option can only be used with the -d switch, and the
differencing function will be invoked and fileListA.txt and fileListB.txt
will be compared. Normally, Baseline B is the newer or the current
version of the program, as compared to Baseline A. If there is a space in
the path, add a ‘\’ before the space.

-t # Sets the modification threshold, the percentage of common characters
between two lines of code to be compared over the length of the longest
line. If two lines have the percentage of common characters equal or
higher than the specified threshold, they are matched and counted as
modified. Otherwise, they are counted as one SLOC deleted and one
SLOC added. The valid values range from 0 to 100. If the switch is not
used, UCC uses the default threshold of 60 (same as -t 60).

-funcDiff Depending on the programming language, enables function-level or
module-level differencing. In other words, for C++, Java, and other
languages that defines functions within a single source file, the output
also shows the number of modified, added, deleted, and unmodified
lines within the function. Functions may also be referred to as modules
or other terms in other programming languages. This option works
only when -d is enabled.

-visualdiff Enables visual differencing. This causes differences between baselines
to be logged in diff_dump.txt and highlighted_diff.html for future
visual inspection. This option works only when -d is enabled.

-dir Specifies directories containing files to be counted and/or compared.
If this argument is provided, the input list files (see above) are ignored.
If the –d is not present, UCC looks for dirA and filespecs. If the -d is
present, UCC looks for dirA, dirB and filespecs. The directories are
searched recursively for files that match the filespecs. See Section
4.2.1.3 for examples. If there is a space in the path, please add a ‘\’
before the space.

 dirA Name of the directory. If the option -d is provided, dirA is the
directory of Baseline A. Otherwise, it specifies the directory to be
counted with the counting function. If there is a space in the path, add
a ‘\’ before the space.

 dirB Name of the directory of Baseline B, used only if the option -d is given.
If there is a space in the path, add a ‘\’ before the space.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

11

 filespecs Specifications of file extensions to be counted/compared; wildcard
chars ? * are allowed. Use a space between filespecs; for example:
*.cpp *.c. Alternatively, can use the –filespecs <filespecs.txt> option.

-threads # Spawns # worker threads. Valid values range from 2 to 80. Requires
Boost C++ Library or Qt GUI interface. Note, the multithread
capability is not compatible with the –visualdiff function.

-tdup # Sets the threshold percentage for duplicated files of the same name.
This specifies the maximum percent difference between two files of the
same name in a baseline to be considered duplicates. The valid values
range from 0 to 100. By default, this threshold is zero, so the files must
be identical by logical SLOC – spacing and comments are not
considered.

-trunc # Sets the truncate threshold, specifying the maximum number of
characters allowed in a logical SLOC. Additional characters will be
truncated. The default value is 10,000, and zero is for no truncation.
Performance can be significantly degraded if truncation is too high.

-cf Supports handling ClearCase filenames. The ClearCase application
appends version information to the filename, starting from ‘@@’. This
option requires the UCC tool to handle the original filename instead
of the ClearCase-modified filename.

-extfile <extfile> Specifies the name and location of a file that contains a map of
languages and extensions. This allows the user to include non-default
extensions, or remove default extensions. See section 6.1 for examples.
If there is a space in the path, add a ‘\’ before the space.

-cc4enable Returns CC4 results (unique conditional clauses for Cyclomatic
Complexity). This switch cannot be used with the –nocomplex switch.

-nowarnings Removes warning messages from the user interface. The warning
messages will still be logged in the log files.

-nouncounted Removes uncounted file messages from the user interface and log files.

-ramlimit #

Requires a number that represents 100 MB, which specifies the
amount of available RAM for UCC’s processing. UCC will then
calculate the amount of RAM required for the processing and may give
a suggestion if the input is too big for the available RAM. However, the
processing will continue. The user may choose to stop UCC’s
processing manually.

-outdir <dirname> Allows users to specify the location where output reports are to be
generated. This allows the user to set up a batch job with multiple UCC
runs and not have the output reports overwritten.

-unified Directs UCC to print counting results to a single unified language file
name TOTAL_outfile.csv.

-ascii Generate reports in text format. Default is .csv.
-legacy Generate reports in legacy format. Use this option to retain the output

files formats supported by Difftool, CodeCount Tools Release 2007.07

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

12

and earlier versions. By default, the new output files formats with new
fields are applied.

-nodup Does not search for duplicate files. Any duplicates will be reported as
unique files. This decreases processing time.

-nocomplex Does not process language keywords or report complexity metrics.
Using this switch will reduce the processing time.

-nolinks Skips Unix symbolic links to prevent multiple counting of same files as
links.

Note: If no argument is given the tool reads and counts all files listed in the text file filelist.txt.
Details on this file are described in Section 4.2.1.1

4.2 Counting and Differencing Details and Examples

4.2.1 Counting Source Files

The counting function is executed using the command line with no -d switch. There are two
alternative ways to specify the source files of the target program: using the file list (fileList.txt)
and using the -dir switch.

4.2.1.1 Using fileList.txt

This command requires the tool to find the file fileList.txt in the working directory (src
directory) and count all source files listed in it:

UCC

The file fileList.txt contains a list of source files to be counted, one filename per line. You can
create the file fileList.txt using one of the following commands.

• Unix:

ls -1 <filespecs> > fileList.txt

Or, use the following to obtain full directory/pathname specification:

find [Directory] -name '<filespecs>' > fileList.txt

To append this file with additional filenames, use:

find [Directory] -name '<filespecs>' >> fileList.txt

• MS-DOS:

dir/B > fileList.txt [Directory]\<filespecs>

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

13

Or, use the following to obtain full directory/pathname specification along with files in
all subdirectories:

dir/B/S > fileList.txt [Directory]\<filespecs>

To append this file with additional filenames, use:

dir/B/S > fileList.txt [Directory]\<filespecs>

Where,

• Directory is the directory name relative to the current working directory (src
directory). Directory is optional, and it is not given, the working directory (src
directory) is implied. Note that spaces in the directory path are handled.

• filespecs is the file specifications, and wildcard chars ? * are allowed. Use a space
between two filespecs, for example: *.cpp *.c

4.2.1.2 Specify a custom file list

This command requires the tool to find the file <fileListA.txt> in the working directory (src
directory) and read it to obtain the input source files listed in it. Since the format of these files is the
same as fileList.txt, you can use the commands described in Section 4.2.1.1 to create them.

UCC -i1 <fileListA>

An advantage to this method is that the input file list can be given a descriptive name, such as
JustCppFiles.txt, and multiple input file lists can be stored in the same directory.

4.2.1.3 Using the –dir switch

This command requires the tool to count all source files contained in the folder project1:

UCC -dir project1

This command requires the tool to count all C/C++ source files with file extensions .cpp, .h, .c,
.hpp, and .cc contained in the folder project1:

UCC -dir project1 *.cpp *.h *.c *.hpp *.cc

This command requires the tool to difference all source files contained in the folder project1 with
those contained in project2:

UCC -d -dir project1 project2

This command requires the tool to difference all C/C++ source files with file extensions .cpp, .h, .c,
.hpp, and .cc contained in the folder project1 with those contained in project2:

UCC -d -dir project1 project2 *.cpp *.h *.c *.hpp *.cc

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

14

Under Unix/Linux when using the –dir option, any wildcards must be enclosed within quotes.
Otherwise, the wildcards will be expanded on the command line and erroneous results will be
produced. For example: UCC -d -dir baseA baseB *.cpp should be written as UCC -d -dir baseA
baseB “*.cpp”.

Shown below is the sample console output for counting source files using UCC.

4.2.2 Differencing Baselines

In this function, source files in the baselines will be matched and compared to determine the counts
for logical SLOC added, deleted, modified, or unmodified.

To run this function, UCC must be called with the -d switch.

4.2.2.1 Using File Lists

Compare source files of Baseline A and Baseline B contained in files fileListA.txt and
fileListB.txt in the working directory (src directory).

UCC -d

By default, the files fileListA.txt and fileListB.txt contains source filenames in Baseline A and
Baseline B, respectively. You can specify different filenames by using the -i1 and -i2 command line
switches.

UCC -d -i1 fileA.txt -i2 fileB.txt

(Since the format of these files is the same as fileList.txt, you can use the commands described
in Section 4.2.1.1 to create them).

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

15

4.2.2.2 Using the -dir switch

This command requires the tool to compare source files of Baseline A and Baseline B contained in
directories project1 and project2:

UCC -d -dir project1 project2

This command requires the tool to compare all C/C++ source files with file extensions .cpp, .h, .c,
.hpp, and .cc contained in the folder project1 and project2:

UCC -d -dir project1 project2 *.cpp *.c *.hpp *.h *.cc

Shown below is the sample console output for differencing of Linux kernel versions with 4 threads
using UCC.

UCC.exe –d –dir DIFF_INPUT\linux-4.7.10 DIFF_INPUT\linux-4.8.10 –outdir
linux_diffoutput_4 –ascii –threads 4

5 Output Files

A variety of output files are produced in order to meet the needs of different types of users. The
reports are by default produced in .csv format, which can be opened using Excel where the user can
do further analysis. The reports can be produced in text format by using the -ascii switch on the
command line, and the files will have the extension .txt.

<LANG> is the name of the language of the source files, e.g., C_CPP for C/C++ files and Java for
Java files.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

16

File Name Function Description
error_log_<mmddyyyy>_ <hhmmss>.txt Both Log file listing errors that occur at the date

specified by month, date, year <mmddyyyy>
and time specified by hours, minutes, seconds
<hhmmss>

outfile_uncounted_files.csv Both Lists files that were unable to be counted
along with the reason (if known)

UCC_Performance_<mmddyyyy>_
<hhmmss>.txt

Both Performance information, such as run time,
number of files processed, files/second
processed

<LANG>_outfile.csv Counting Counting results for source files of <LANG>
outfile_summary.csv Counting Summary counting results for all languages

and source files counted
outfile_cplx.csv Counting Complexity results
outfile_cyclomatic_cplx.csv Counting Cyclomatic complexity results
DuplicatePairs.csv Counting Lists original and duplicate file pairs
Duplicates-<LANG>_outfile.csv Counting Counting results for duplicate files of

<LANG>
Duplicates-outfile_cplx.csv Counting Complexity results for duplicate files when

counting
Duplicates-
outfile_cyclomatic_cplx.csv

Counting Cyclomatic complexity results for duplicate
files when counting

outfile_maintainability_index.csv Counting Maintainability Index results
MatchedPairs.csv Differencing Shows how files in Baseline A and Baseline B

were paired for differencing
outfile_diff_results.csv Differencing Main differencing results
outfile_func_diff_results.csv Differencing Function-level differencing results.
Baseline-<A|B>-<LANG>_outfile.csv Differencing Counting results for source files of <LANG>

for Baseline A and Baseline B
Baseline-<A|B>-outfile_summary.csv Differencing Summary counting results for all languages

and source files in Baseline A and Baseline B
Baseline-<A|B>-outfile_cplx.csv Differencing Complexity results for Baseline A and Baseline

B
Baseline-<A|B>-
outfile_cyclomatic_cplx.csv

Differencing Cyclomatic complexity results for Baseline A
and Baseline B

Baseline-<A|B>-
outfile_maintainability_index.csv

Differencing Maintainability Index results for Baseline A
and Baseline B

Duplicates-<A|B>-
DuplicatePairs.csv

Differencing Lists original and duplicate file pairs in
Baseline A and Baseline B

Duplicates-<A|B>-
<LANG>_outfile.csv

Differencing Counting results for duplicate files of
<LANG> in Baseline A and Baseline B

Duplicates-<A|B>-
outfile_summary.csv

 Summary counting results for duplicate files
for all languages in Baseline A and Baseline B

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

17

Duplicates-<A|B>-outfile_cplx.csv Differencing Complexity results for duplicate files in
Baseline A and Baseline B

Duplicates-<A|B>-
outfile_cyclomatic_cplx.csv

Differencing Cyclomatic complexity results for duplicate
files in Baseline A and Baseline B

Highlighted_diff.html Differencing Visual representation of added, modified,
and deleted lines between files in Baseline A
and Baseline B

6 Counting Standards

UCC counts physical and logical SLOC and other metrics according to published counting
standards, which are developed at CSSE so that the logic behind the metrics being produced is clear
to all participants. The counting standard documents are separate documents and are included in
the UCC release. The counting standards are derived from the latest available ANSII standard
language specification for each language counted by UCC. Users should note that non-ANSII
standard compilers might have commands that are outside of the ANSII standard specification. The
results from using UCC on non-ANSII standard code cannot be guaranteed.

The counting standards documents for each language provide detailed information of what is
counted, and how items are counted, so that all users can understand the operations and outputs of
UCC. Definitions are included of what is considered to be a blank line, comment line, and
executable line of code for each language. The document describes in detail the physical and logical
SLOC counting rules. Physical SLOC are counted at one per line. Logical SLOC counting rules are
grouped by structure and the order of precedence is defined.

The items being measured, in order of precedence (numbered), are:

• 1. Executable lines,
• Non-executable lines

o 2. Declaration (Data) lines
o 3. Compiler directives
o Comments

§ 4. On their own lines
§ 5. Embedded
§ 6. Banners
§ 7. Empty comments
§ 8. Blank lines

A table of logical SLOC counting rules is provided, and further specifies the order of precedence for
the various types of executable lines. The rules define precisely when a count occurs, and a comments
section gives further explanation.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

18

The counting standards define for each language what keywords are counted and tallied in the
output report. The keywords include compiler directives, data keywords, and executable keywords.
Compiler directives are statements that tell the compiler how to compile a program but not what to
compile. Data keywords define data declarations, which describe storage elements and the format
that will be used to interpret data contained in them. Executable keywords are execution control
statements. The specified compiler directives, data keywords, and executable keywords are counted
and included in output reports. The data keywords are specific to each language.

7 Terminology Explanation

7.1 File Extensions

The tool determines the language of a source file using its file extension. This version supports the
following languages and file extensions:

Languages File Extensions
Ada .ada, .a, .adb, .ads
Assembly .asm, .s, .asm.ppc
ASP, ASP.NET .asp, .aspx
Bash .sh, .ksh
C Shell Script .csh, .tcsh
C# .cs
C/C++ .cpp, .c, .cc, .cxx, .inl, .h, .hh, .hpp, .hxx, .inc
COBOL .cbl, .cob, .cpy
ColdFusion .cfm, .cfml, .cfc
ColdFusion Script .cfs
CSS .css
Data Use file mapping with Datafile=<ext>
DOS Batch .bat
Fortran .f, .for, .f77, .f90, .f95, .f03, .hpf
HTML .htm, .html, .shtml, .stm, .sht, .oth, .xhtml
IDL .pro, .sav
Java .java
JavaScript .js
JSP .jsp
Makefiles .make, .makefile, (files named Makefile)
MATLAB .m
NeXtMidas .mm
Pascal .pas, .p, .pp, .pa3, .pa4, .pa5
Perl .pl, .pm
PhP .php

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

19

Python .py
Ruby .rb
Scala .scala
SQL .sql
VB .vb, .frm, .mod, .cls, .bas
VBScript .vbs
Verilog .v
VHDL .vhd, .vhdl
X-Midas .txt
XML .xml

It may be desirable to associate an additional extension to a language counter, or to disassociate a
particular extension from a language counter. This can be done using the -extfile <filename>
option on the command line. For more information, see Section 8.13.

7.2 Basic Assumption and Definitions

7.2.1 Data Files

Data files shall contain only blank lines and data lines. Data lines are counted using the physical
SLOC definition.

7.2.2 Source Files

Source code files may contain blank lines, comment lines (whole or embedded), compiler directives,
data lines, or executable lines. Source code files have to be compiled successfully to ensure the
integrity of the inclusive syntax.

7.2.3 SLOC Definitions and Counting Rules

Please refer to the counting standard documents.

7.2.4 TAB

A Tab character is treated as a blank character upon input.

7.2.5 Blank Line

A blank line is defined as any physical line of the source file that contains only blank, Tab, or form
feed characters prior to the occurrence of a carriage return (EOLN).

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

20

7.2.6 Total Sizing

The total sizing of analyzed source code files in terms of the SLOC count contains the highest degree
of confidence. However, the sizing information pertaining to the sub classifications (compiler
directives, data lines, executable lines) has a somewhat lower level of confidence associated with
them.

Misclassifications of the sub classifications of SLOC may occur due to:

1) user modifications to the UCC tool,
2) syntax and semantic enhancements to the parsed programming language,
3) exotic usage of the parsed programming language, and
4) integrity of the host platform execution environment.

Additionally, in some programming languages a single SLOC may contain attributes of both a data
declaration and an executable instruction simultaneously. These occurrences represent events
beyond the control of the UCC tool designer and may cause the inclusive parsing capabilities of the
tool to misclassify a particular SLOC. For these reasons, the counts of sub-classifications should be
regarded as an approximation and not as a precise count. In only the physical SLOC definition does
the sum of the sub-classification counts equal the total physical SLOC count.

7.2.7 Keyword Count

The search for any programming language specific keywords over a physical line of code for purposes
of incrementing the tally of occurrences shall include the detection of multiple keywords of the same
type, e.g., two occurrences of the keyword READ on the same physical line.

The search for any programming language specific keywords over a physical line of code for purposes
of incrementing the tally of occurrences shall include the detection on multiple keywords of different
types, e.g., occurrences of keywords READ and WRITE on the same physical line.

Keywords found within comments (whole or embedded) or string literals shall not be included in
the tally count.

8 Switch Usage Detail

This section will describe each switch in detail along with information on how to tailor the switch
usage for various execution requirements. When applicable, performance implications will be
described as well.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

21

8.1 –v

Displays the version number of UCC being executed.

Initially, the code counting tools were individual counters, and a separate program did differencing.
These programs are still available on the public website at http://csse.usc.edu/ucc_wp and are
named the CodeCount Tools – Release 2007.07. These tools were combined into a monolith
program titled Unified Code Count (UCC). The public website offers multiple versions of UCC.
The UCC Title indicates the year and month of the release. For example, Release 2009.10 was
released in October of 2009. Users may choose to use previous releases for reasons that may include
there being a bug in a more current release, or a bug was fixed in the current release and the user
wants consistency with the way source was previously counted. For releases dated 2011.03 and later,
including -v on the command line will cause UCC to print the version number to the standard
output device. The message format is “UCC version 2011.03”, meaning UCC release 2011.03, or
the release of March, 2011.

8.2 –d

If specified, UCC will run the differencing function. Otherwise, the counting function is executed.

 UCC can be used to count SLOC within files, but it can also be used to difference two baselines of
files. When just counting and not differencing is desired, use the UCC command without the -d
switch. Counting is the default. When differencing, counting is performed and reported, and
additional reports are produced which compare the files in two baselines and determine, for each
file, how many logical lines of code were added, deleted, modified, or not modified. For counting
and differencing, use the UCC -d command.

Differencing is a powerful capability that allows code changes between two baselines (or versions) of
code to be monitored. Only differences with respect to logical SLOC are reported to provide insight
into the extent of work completed between baselines.

The differencing process matches files between the two baselines using an algorithm that ensures
the best possible match is found for all files. The matched file pairs are compared to each other line
by line to determine how many logical SLOC have been added, deleted, modified, or are
unmodified. All logical SLOC from any files in Baseline A that are not matched to a file in Baseline
B are considered deleted, and all logical SLOC from any files in Baseline B that are not matched to
a file in Baseline A are considered added.

The user is given the ability to tailor how UCC determines if a logical SLOC has been modified
using the -t # switch. For more information, see Section 8.5.

The following relationships hold:

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

22

Baseline A SLOC = Deleted SLOC + Modified SLOC + Unmodified SLOC

Baseline B SLOC = New SLOC + Modified SLOC + Unmodified SLOC

Differencing will add a significant amount of time to the processing. It also will require more
memory. If large numbers of files are in each baseline, there is a possibility that memory will become
completely used and the process will hang. This problem may be addressed in a variety of ways.

The user may be able to run the process on a computer that has more memory than the computer
that hung, or they may be able to add memory to the computer that hung.

The user may divide the input files into a number of smaller sets. If the user orders the smaller sets
by language types, the duplicate file function will still work appropriately. If the files of a language
type must be placed in separate sets, the duplicate file function may not find all duplicate pairs. If
multiple sets are used, the user may need to aggregate the output files, as this will not be done
automatically. The -outdir switch may be used to direct the outputs of sequential UCC executions
to different directories, enabling the user to more easily specify multiple UCC runs. See Section
8.16 for more information.

The user may choose to disable the duplicate file process by adding the -nodup switch to the UCC
command line. The search for duplicate files will not be performed, resulting in a performance
speedup. This may also result in a reduction of the amount of memory needed, and larger file sets
may be possible.

Algorithms that may contribute to the ability of UCC to avoid memory problems are being explored
and may be included in future releases.

8.3 –i1 fileListA.txt

Input list filename containing filenames in Baseline A.

The fileListA.txt file is required to be a plain text format file containing a list of filenames to be
processed, one per line. The files may be specified as full or relative directory/pathname
specification. UCC will open the file specified by the fileListA.txt argument, read each line and
attempt to open each file specified. If a file cannot be opened, an error message is generated, and a
tally is kept and reported in the output report.

When counting, as specified by the lack of -d switch on the command line, UCC will expect just
the -i1 switch and not the -i2 switch. When differencing, as specified by the inclusion of the -d
switch on the command line, UCC will expect to find the -i2 switch. If these conditions are not
met, an error is generated.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

23

8.4 –i2 fileListB.txt

Input list filename containing filenames in Baseline B.

If the -d switch is present, the differencing function will be invoked and fileListA.txt and fileListB.txt
will be compared. Normally, Baseline B is the newer or the current version of the program, as
compared to Baseline A. The file format is same as Baseline A.

8.5 –t #

Specifies the modification threshold.

The user is given the ability to tailor how UCC determines if a SLOC has been modified using the
–t # switch. The # is the modification threshold and can be any integer between 0 and 100, with
the default being 60 (same as -t 60). The modification threshold specifies a percentage; i.e. -t 60
indicates a modification threshold of 60%. If two SLOC have the percentage of common characters
equal or higher than the specified threshold, as compared over the length of the longest line, they
are matched and counted as modified. Otherwise, they are counted as one SLOC deleted and one
SLOC added. In this example, using -t 60, if 60% of the characters of the longest line match with
the compared line, the lines are considered modified in Baseline B. If less than 60% of the characters
in the longest line match with the compared line, Baseline A counts one SLOC deleted, and Baseline
B counts one SLOC added. If the compared lines are exactly the same, the lines are counted as
unmodified.

8.6 –funcDiff

Enables function-level differencing. Functions may also be known as modules among many other
things in other programming languages.

The user is given the ability to determine the logical SLOC modified, added, deleted, and
unmodified within functions/modules in Baseline A and Baseline B by using the –funcDiff switch.
This switch causes the differences between Baseline A’s and Baseline B’s functions/modules to be
logged in outfile_func_diff.csv.

8.7 –visualdiff

Enables visual differencing.

The user is given the ability to visually inspect the differences between Baseline A and Baseline B by
using the –visualdiff switch. The output will only contain the modified files. This switch causes
the differences between Baseline A and Baseline B to be logged in two different files: diff_dump.txt

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

24

and highlighted_diff.html. These files can be inspected in order to better understand how files from
different baselines differ from each other.

Note: The multithread capability is not compatible with the –visualdiff function.

8.8 –dir <dirA> [<dirB>] [filespecs …]

Specify directories containing files to be counted and/or compared.

The -dir switch causes UCC to look for files to be counted in the specified directory and its
subdirectories. If extensions are provided, it will select only files with those extensions. Any default
or specified input filelists will be ignored.

If the -d (for differencing) is not present, UCC will only look for <dirA> and filespecs. If the -d is
present, UCC will look for dirA, dirB and filespecs. The directories are searched recursively for files
that match the filespecs.

dirA Name of the top level directory. If the option -d is provided, dirA is the
directory of Baseline A. Otherwise, it specifies the directory to be counted
with the counting function. The directory search is recursive so that all
subdirectories under the top level directory are searched.

dirB Name of the top level directory of Baseline B, used only if the option -d is
given. The directory search is recursive so that all subdirectories under the
top level directory are searched.

filespecs Specifications of file extensions to be counted/compared; wildcard chars ? *
are allowed. Use a space between filespecs; for example, *.cpp *.c

Examples:

This command will do counting only, since there is no -d, and will look in the directory dirA
recursively to find all files. Any files with extensions recognized by UCC will be counted:

UCC –dir dirA *.*

This command is equivalent to UCC dirA *.*. It will do counting only, and will look in the directory
dirA recursively to find all files. Any files with extensions recognized by UCC will be counted:

UCC –dir dirA

This command will do counting only, since there is no –d, and will look in the directory dirA
recursively, and will process all files found with the extensions specified (.c, .cpp, .f, .for, .f77, .f90,
.f03, *.hpf). Notice that the file extensions are separated by a space but have no comma between:

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

25

UCC –dir dirA *.c *.cpp *.f *.for *.f77 *.f90 *.f03 *.hpf

This command is improperly formed, as it specifies -d for differencing, but two directories must be
provided:

UCC -d –dir dirA *.*

This command will difference the files found in dirA with the files found in dirB. The *.* direct
UCC to process all files with an extension recognized by UCC:

UCC -d –dir dirA dirB *.*

This command will difference files found in directories dirA and dirB recursively with any extension
that UCC recognizes:

UCC -d –dir dirA dirB

This command will difference files with the extension .java or .sql found in directories dirA and
dirB recursively. No other files will be processed:

UCC –d -dir dirA dirB *.java *.sql

8.9 –threads #

UCC will perform faster provided that the underlying hardware has 2 or more CPU cores and the
user utilizes the –threads # switch. This option requires either the Qt GUI interface or that UCC
is linked with a compiled version of the Boost C++ cross platform thread library. Notice, this
function is not currently compatible with the –visualdiff function.

It may be that using -threads # on single CPU core hardware will also run faster. Faster
performance for a single CPU core is possible if the optimized build of UCC does not fully use the
available CPU to memory, disk I/O, etc. bandwidth.

To use the threads option through the Qt GUI interface, follow the instructions of compiling the
GUI in Section 3.2.1.The following gives a summary of how to build UCC linked with Boost C++
Library. http://www.boost.org will have more details.

1. Download and install Boost C++ Library (minimum required version found in Section 2.4)

2. In UCCThread.h from UCC’s src directory, remove the “//” comment symbol from line 39. Lines
38-40 should look like:
#else

 // Available if Boost thread library installed, compiled, .h included
and linked.

 #define ENABLE_THREADS

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

26

#endif

3. Compile UCC with the appropriate commands to link to the Boost library
4. After UCC is built, use the –threads 2 (or more) command for multiple threads

8.10 –tdup #

Specifies the threshold percentage for identical SLOC when comparing two files within a baseline
for one file to be considered a duplicate of the other.

This switch specifies the maximum percent difference allowed between the SLOC in two files of the
same name within a baseline to be considered duplicates. Blank lines and comments are not
considered. By default, this threshold is zero, so the files must be identical by logical SLOC in order
to be considered duplicates. Valid values are integers between 1 and 100. The integer corresponds
to the percentage of SLOC which may be different when two files are compared in order to be
considered duplicates. For example, -tdup 20 would mean that a file is a duplicate of another file if
20% or less of the SLOC are different.

Duplicate file processing is computationally expensive. A switch -nodup is available to inhibit the
duplicate processing in order to reduce execution time.

Files must be in the same baseline, but not necessarily in the same directory, in order to be duplicates.
The files do not need to have the same name; however, if the file names are different, they have to
be exactly the same, including comments and blank lines, to be identified as duplicates. Files with
the same name, but not in the same subdirectory, are considered duplicates if the code is identical,
even if there are differences in the comments and/or blank lines.

Duplicate files are counted and reported separately. One purpose for this command is to isolate
SLOC counts for files which did not require development, but were duplicated for a variety of
reasons which could include for configuration management purposes, or were computer generated.

8.11 –trunc #

Truncation threshold.

The truncation threshold specifies the maximum number of characters allowed in a logical SLOC.
Additional characters will be truncated. The default value is 10,000. If -trunc 0 is specified, no
truncation is done. Performance can be significantly degraded if truncation is too high.

8.12 –cf

Support handling ClearCase filenames.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

27

The ClearCase application appends version information to the filename, starting from ‘@@’. This
option requires the UCC tool to handle the original filename instead of the ClearCase-modified
filename by stripping off the ‘@@’ and any characters after that and before the extension.

8.13 –extfile <extfilename>

UCC uses a file’s extension to associates files to be counted with language counting modules. One
or more extensions may be associated with a given language counter. The table in Section 7.1 lists
the current languages and their associated file extensions.

Using just the –extfile switch without specifying the <extfile> returns a list of the default
languages with related file extensions, which can be used to modify the default file extension settings.

The -extfile <extfile> switch allows users to modify the file extension mapping by specifying
which file extensions are to be associated with the language counters, including prolonged extensions
or no extension. This switch allows the user to include non-default extensions, or remove default
extensions. This gives the user more flexibility in determining which files will be counted. It also will
be useful as more languages are added to UCC, as some extensions may be used by more than one
language. In addition to specifying file extensions, users can also specify custom delimiters for line
and block comments in the extfile in a specific format. Each line starting with the line comment
delimiter is counted as comment. For block comments, the starting and ending of the block
comments has to be indicated by the user. The delimiters at even position indicate the opening block
comments and the delimiters at odd position indicate the closing block comments. These delimiters
can be either single character or strings as well.

Example extfile that includes both file extensions and comment delimiters:

C_CPP=.abc

block:{<<<,>>>}

line:{!!,#}

The above example contains file extension mapping of .abc, block comment delimiter starting with
“<<<” and ending with “>>>” and line comments delimiter that start with “!!” or “#”.

Data files will be only be counted for physical SLOC, and only if the user uses an extfile to specify
the data file extensions. Refer to Section 8.13.2 for more information.

The file named by <extfile> is a list that associates user-specified extensions with UCC language
counters. There are no spaces between the language, the equal sign, or the extensions. A comma
separates the extensions. Two commas with nothing in between them specifies no extension.
Comments may be placed within square brackets, for example [comment], and may be placed
anywhere in the extfile.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

28

Each line in the file should have the form:

<language>=.<ext1>,.<ext2>,…<extn>

The –extfile <extfile> option gives the user great flexibility in tailoring specific runs. For instance,
suppose a user wishes to count only the files written in Fortran 77 as indicated by having the
extension .f77. Placing the Fortran=.f77 command into the extfile would accomplish that. If a user
wishes to count Fortran files generated with a non-standard extension, such as .foo. The user can
place the command Fortran=.foo in the extfile.

Examples:

This line would cause any file with the extensions .java or .javax, to be counted with the Java language
counter. No other extensions will be counted with the java language counter. All other languages
will use the default extensions.

Java=.java,,.javax

These lines would cause the Ada counter to count only files with extensions of .ada or .a. All other
Ada files with other extensions will be ignored. Also, the Fortran counter will count only files with
extensions of .f or .for. All Fortran files with other extensions will be ignored.

Ada=.ada,.a

Fortran=.f,.for

8.13.1 File Extension Mapping Names

For reference, the current file extension mappings are shown below. Be sure to use the Internal
UCC Language Name in the -extfile mapping. For example, don’t use C/C++, use C_CPP.

Language Internal UCC
Language Name (for
use in the –extfile
option)

File Extensions

Ada Ada .ada, .a, .adb, .ads

Assembly Assembly .asm, .s, .asm.ppc

ASP, ASP.NET ASP .asp, .aspx

Bash Bash .sh, .ksh

C Shell Script C-Shell .csh, .tcsh

C# C# .cs

C/C++ C_CPP .cpp, .c, .h, .hpp, .cc, .hh

COBOL COBOL .cbl, .cob, .cpy

ColdFusion ColdFusion .cfm, .cfml, .cfc

ColdFusion Script CFSCRIPT .cfs

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

29

CSS CSS .css

Data Datafile Use file mapping with Datafile=<ext> (see
below)

DOS Batch DOS_Batch .bat

Fortran Fortran .f, .for, .f77, .f90, .f95, .f03, .hpf

HTML HTML .htm, .html, .shtml, .stm, .sht, .oth, .xhtml

IDL IDL .pro, .sav

Java Java .java

JavaScript JavaScript .js

JSP JSP .jsp

Makefiles Makefile .make, .makefile, (files named Makefile)

MATLAB MATLAB .m

NeXtMidas NeXtMidas .mm

Objective C OBJC

Pascal Pascal .pas, .p, .pp, .pa3, .pa4, .pa5

Perl Perl .pl, .pm

PhP PHP .php

Python Python .py

Ruby Ruby .rb

Scala Scala .scala

SQL SQL .sql

VB Visual_Basic .vb, .frm, .mod, .cls, .bas

VBScript VBScript .vbs

Verilog Verilog .v

VHDL VHDL .vhd, .vhdl

X-Midas X-Midas .txt

XML XML .xml

8.13.2 Counting Objective C files

Since Objective C hares the .h file with C++, .m with Matlab, and .mm with NeXtMidas. Users
need to use –extfile <extfilename> feature to specify the extensions with Objective C when trying
to count Objective C files. An example of how the extfile needs to be formatted is below:

C_CPP=.cpp,.c,.cc,.cxx,.inl,.hh,.hpp,.hxx,.inc
MATLAB=
NeXtMidas=
OBJC=.h,.m,.mm

8.13.3 Data file counting

The user must specify Datafile=<ext> to invoke the data counting function. The tool will output
only physical counts and only for the extensions specified.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

30

Examples:

Datafile=.dat

The reason the –extfile <extfile> command must be used for counting data files is that the
extension .txt, which is common for data files, was already assigned to the X-Midas counter.

Datafile=.dat,.txt

8.14 –cc4enable

The 4th and final ring of Cyclomatic Complexity, referred to as CC4 in UCC, identifies identical
decision branches with each function. Since the algorithm that identifies identical decision
branches requires heavy processing, you may notice that a significant amount of time is required to
get the results, and UCC may consume significantly more RAM and CPU resources.

With –cc4enable, UCC not only identifies completely identical decision branches, but also
clauses that are syntactically identical. For example,

 if (flag)

and

 if (flag == true)

would be identified as identical, and only counted as 1 decision branch. UCC will also identify
nested statements that are repeated.

8.15 –nowarnings

The –nowarnings switch removes warning messages from the command line and GUI. The warning
messages will still be logged in the error log file.

8.16 –nouncounted

The –nouncounted switch removes uncounted file messages from the command line and GUI and
error log file.

8.17 –ramlimit #

The –ramlimit # switch requires a number that represents 100MB. Using this representation of
how much RAM is available, UCC calculates the amount of RAM is needed for the processing
based on the input. UCC will then show a message such as “Information: unlikely to succeed…”
and the user may choose to stop UCC before waiting for UCC to run out of RAM and stop with a
low on RAM memory message. The valid range of values is from 1 to 5120, which represents 100

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

31

MB to 500 GB. Note: Even if UCC calculates that it will not be able to complete the processing
with the amount of available RAM given by the –ramlimit # command, it will continue to run.
The user must stop UCC manually.

8.18 –outdir <dirname>

This command allows the user to specify the location and directory of where the output reports
should be generated. If the directory does not exist, UCC will create it. This allows the user to set
up a batch job with multiple UCC runs and not have the output reports overwritten.

Examples:

This command will look for the default input list fileListA.txt, count the SLOC within the files,
and write the output reports into the directory test1:

UCC -outdir test1

This command will open the input list of files in test2files, read them in, count the SLOC, and
write the output reports into directory test2.

UCC -outdir test2 -i1 test2files

8.19 –unified

Directs UCC to print counting results to a single unified language file name TOTAL_outfile.csv.

If the -unified command is not specified, a report is produced for each language and is named
<Lang>_outfile.csv, which is an Excel format.

8.20 –ascii

Generate reports in text format. The default report format is .csv, which opens directly into Excel.

8.21 –legacy

Generate reports in legacy format. Use this option to retain the output files formats supported by
Difftool, CodeCount Tools Release 2007.07 and earlier versions. The default format has several
additional fields.

8.22 –nodup

Do not search for duplicate files. The duplicate file processing is both memory and processor
intensive, as the process analyzes each file and compares to potential duplicates character by
character. If the user does not need to separate out duplicate files within a baseline, the -nodup

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

32

switch will disable the duplicate search decreasing processing time significantly. Any duplicates will
be reported as unique files.

8.23 –nocomplex

Do not process or report keywords or complexity metrics. Using this switch will reduce the
processing time.

8.24 –nolinks

Do not follow symbolic links on Unix based systems. This disables following symbolic links to
directories and counting of links to files. This can prevent duplicate file counts on Unix/Linux
systems.

8.25 –header <filename>

Replaces the default header in the reports with contents of the <filename>.

8.26 –noheader

Removes the default header in reports.

8.27 –filespecs <filespecs.txt>

Reads the file extensions specified in filespecs.txt line by line and counts only those language files.
This is used in conjunction with –dir switch to count a number of files from a given directory. This
option can be used as an alternative to the previous filespecs functionality.

9 Performance Issues

Performance is an issue with many facets, among them processor speed, memory size and utilization,
bus speed, and program logic. An attempt is made here to point out many of the factors that can
affect the performance of running UCC, along with suggestions for improving the performance.

Certain factors, such as the speed of the CPU, or the amount of memory in the computer, are
beyond the scope of this document except to point out to your IT manager that it is time for an
upgrade. However, we will attempt to point out cases where performance improvements can be
made.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

33

9.1 Compiler Optimization

UCC is distributed as open source code. Users download the code and compile the executable using
any ANSI-standard C++ compiler. Many compilers offer a variety of optimization levels that include
speeding up the execution of the program, reducing the size of the program in memory, streamlining
low level code that is used multiple times, etc. Typically, you gain speed at the expense of space
needed for the resulting executable, or you can get a smaller executable that uses less memory, but
doesn’t run as fast. The user should consult the user’s manual for the compiler being used for the
appropriate compiler optimization techniques.

9.1.1 Microsoft Visual Studio

In Microsoft Visual Studio, there are options for General Whole Program Optimization, including
Use Link Time Code Generation, Profile Guided Optimization – Instrument, Profile Guided
Optimization-Optimize, Profile Guided Optimization-Update, and No Whole Program
Optimization. Under the C/C++ Optimization men there are options for Minimize Size (/O1),
Maximize Speed (/O2), Full Optimization (/Ox), Custom, Inherit from parent or project defaults,
or Disabled (/Od). It is left to the user to experiment with the optimization available with the user’s
compiler in order to meet their particular situation.

9.1.2 GNU g++

The GNU g++ provides a range of general optimization levels, numbered from 0-3, as well as
individual options for tailored optimization. The optimization level is specified on the compilation
command line with a -OLEVEL switch, where LEVEL is a number from 0 to 3. The levels are
described below.

-O0 or no -O option (default) – No optimization is performed, and the source code is compiled in
the most straightforward way. This is the best option to use when debugging.

-O1 or -O – Common forms of optimization are applied that do not require any speed-space
tradeoffs. Executables should be smaller and faster than with -O0. Compilation time can actually be
less than when compiling with -O0.

-O2 – Includes the optimizations in -O1, plus some further optimizations. No speed-space tradeoffs
are used, so the executable should not increase in size. The compiler will require more memory and
time for the compilation, but should not increase the executable size. This is the best option to use
when producing a deployable program.

-O3 – Includes more expensive optimizations, such as function inlining, as well as the optimizations
of levels -O1 and -O2. This option may increase the speed of the executable, but can also increase
the size. Under certain circumstances, it might make the program run slower.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

34

-funroll-loops – This option is independent of the other optimization options. It turns on loop-
unrolling, and will increase the size of the executable. It may or may not improve speed.

-Os – This option will produce the smallest possible executable, valuable for systems constrained by
memory or disk space. In some cases, a smaller executable will run faster, due to better cache usage.

9.2 UCC Switches Affecting Performance

9.2.1 –threads #

Internal improvements to UCC for better performance added to this version (about 1.5 times
faster than prior 2015 code base). Threads offer even faster performance. Differencing and file
reading / analyze / counting will run faster using threads. Tests using 2 extra worker threads on 2
CPU cores hardware gives an overall speed about 2 times faster (rather than 1.5 times). There is a
modest RAM overhead for each thread as it uses a thread local private stack instead of the UCC
process stack. Users should enjoy faster results using extra worker threads.

9.2.2 –ramlimit #

The -ramlimit switch gives UCC a memory amount in 100 MB of how much RAM is available
for estimation of overall minimum RAM use. The default value is 5 (or 500 MB). Valid ranges
are between 100 MB and 500 GB. RAM memory use in this version of UCC has been very much
reduced for large sets of files except when wanting to do duplicate checking quickly (see -nodup
switch description below). UCC internally estimates the amount of RAM needed to do the
features like differencing and duplicate checking. UCC uses -ramlimit to calculate if the
minimum RAM estimate is over the limit then an Information message shows. UCC will still
continue with detailed processing.

9.2.3 -trunc #

Meaning: Truncation threshold

The truncation threshold specifies the maximum number of characters to be processed in a logical
SLOC. Additional characters will be truncated. The default value is 10,000. If -trunc 0 is specified,
no truncation is done. Performance can be significantly degraded if truncation is too high. The
tradeoff is that when two SLOC are being compared between two programs, the comparison is done
character by character, but is stopped when the truncation threshold is met. If there is no difference
before the threshold is met, the SLOC are considered unmodified, but if there is a difference after
the threshold, the SLOC should have been identified as modified, rather than unmodified. The
more long statements (> threshold) the more likely the SLOC identification is to be incorrect. The
user must make the tradeoff determination of whether to expend more processing time to process

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

35

longer statements for greater accuracy, or risk having incorrect SLOC modified/unmodified counts
but with a quicker execution speed.

9.2.4 -nodup

Meaning: Do not search for duplicate files.

By default, UCC looks within each baseline for files whose SLOC are identical to the SLOC in
other files. The first file is considered unique, but all the other identical files are considered
duplicates. Comments and blank lines are not considered in the duplicate processing; i.e. if the
comments and/or blank lines change but the SLOC are still duplicates, the file is still considered a
duplicate. If the SLOC have been rearranged but no characters have been modified, they are still
considered duplicate.

The duplicate files are counted and reported separately from the unique files for the purpose of
measuring work done. The Duplicates-<LANG>_outfile.csv, where <LANG> is the language, will
have the counts, and the DuplicatePairs.csv file will identify the original and duplicate file pairs.

The duplicate processing is compute intensive, and increases the execution speed. The user can
choose to suppress the duplicate processing by using the -nodup switch on the command line. Then
all files will be considered unique and will be included in the standard reports.

9.2.5 -nocomplex

Meaning: Do not produce keyword counts or complexity metrics

By default, UCC counts keywords and directive, nested loops, and other metrics useful in evaluating
complexity. While this is not a major computational task, some processing time can be eliminated
by using the -nocomplex switch to suppress the complexity metrics.

9.3 Large Jobs

Large jobs can be defined many ways. A large job may have large amounts of average size files, or a
smaller amount of very large files, or files with very long lines of code. Computers with more
memory, more disk space, and/or more processor speed will be able to process larger jobs using less
time. This section will give strategies on how to do the best you can with what you have.

9.3.1 Memory Limitations

Symptom: UCC process starts out fine, reporting progress as it goes, and then it hangs. Most likely
this is a problem where the process has run out of RAM memory. Since v2015.12, a low RAM
memory message will be shown before existing if a memory allocation has failed. The message will
also include suggested alternate approaches that are more likely to be successful. Refer to Section

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

36

9.2.2 regarding the –ramlimit switch, which will allow UCC to warn the user if the estimated
minimum needed RAM is more than the given available RAM.

9.3.2 Process One or a Few Languages at a Time

If the input files are written in multiple languages, UCC can be directed to process only certain
languages, or even certain extensions within a given language. Refer to Section 8.8 for details on the
-dir switch and Section 8.13 for details on the –extfile switch.

9.3.3 Divide and Conquer

The input files can be regrouped into lesser amounts of files. This can be done by creating extra
input file lists, giving each a different name, and dividing up the input files into the various lists. See
Section 4.2.1.1 for tips on creating file lists. For example, the user creates 3 file lists called
fileList1.txt, fileList2.txt, and fileList3.txt. Each file list can be run separately using the commands:

UCC -i1 fileList1.txt

UCC -i1 fileList2.txt

UCC -i1 fileList3.txt

Note that the output reports will all be written into the same working directory (src directory), and
any reports that have the same name will overwrite the previous reports.

9.3.4 Preserving Output Files from Multiple Runs

If multiple UCC runs are to be made consecutively, the user can separate the output report files by
using the -outdir command.

For example, the following three runs will output reports into different directories.

 UCC -i1 fileList1.txt -outdir fileList1

UCC -i1 fileList2.txt -outdir fileList2

UCC -i1 fileList3.txt -outdir fileList3

UCC will write the output reports into the directory specified by the -outdir file. If the output
directory does not exist, UCC will create it. Consequently the output reports are segregated by run,
and are not overwritten. This allows the user to create a batch job or command file to execute
multiple UCC runs sequentially where each consecutive run writes the output reports into a
different directory.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

37

9.3.5 Difference in Two Steps

When differencing two large baselines, the user can count each baseline separately to get the
duplicate file information. Then difference the two baselines with duplicate processing turned off.
See Section 8.22 for more information.

9.3.6 Long Line Truncation

If there are several long lines (greater than 10,000 characters), as indicated by entries in the error
log, the user can set the truncation to a smaller number using the switch. Any differences that occur
after the truncation will not be detected.

10 Language Specific Information

10.1 Ruby

The Ruby programming language allows continuation characters of “,” and “.”, but also allows a
default continuation if the syntax of a line is not complete. The compiler assumes that the next line
is a continuation line. UCC does not examine the syntax. Consequently, if a line is a continuation
of the previous line due to context specific information, UCC will not understand that and will
count it as a separate line. This could impact the LSLOC count, making it higher than it should be.
The PSLOC count will not be affected.

10.2 Fortran

Currently Fortran version 77 and lower uses a fixed format where any character (except 0) in column
6 is a continuation character indicating that this line is a continuation of the previous line. Later
versions (F90 and above) do not have this restriction; the continuation character is an & at the end
of the line. Currently UCC is using the format for F90 for all Fortran code. There are plans to
develop a separate counter for Fortran 77 and lower.

10.3 JavaScript

The JavaScript counter does not count the statement that is not terminated by a semicolon.

11 Errors, Exceptions & Warnings

Here we discuss different scenarios where things could go wrong while running UCC.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

38

11.1 Low on RAM

In the snapshot given below, we see that UCC throws a LOW on RAM exception while parsing a file. As
suggested in the snapshot, one may try differencing alone and do separate duplicate checking for just one
baseline at a time, in this particular case.

Below is another scenario where the above is tried without duplicate checking which still results in a LOW
on RAM exception while parsing a file. In this case, one may try using fewer or no threads, or one can keep
the threads but have a smaller list of files to process.

11.2 Crashes

Crashes occur when UCC stops with or without any indication from OS. One may want to check the error
logs to understand what made UCC to crash and then try restarting UCC and make sure the same is not
replicated again.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

39

Crashes are more unlikely now that a Signal handler is part of UCC. See Signals section below.

11.3 Signals

In the case of signals, UCC does a controlled exit after giving information about what files were being
processed. Specifically when Signal 11 (SIGSEG) is raised, UCC prints the current file name that is being
parsed. One file per thread will be printed. When executing UCC on windows, only one file name is printed
because, as soon as a signal is raised windows forces the process to stop. Whereas in Ubuntu, one file name
per thread is printed. An important thing to note here is using Qt GUI or Boost threads to get threads
running in UCC.

You may try moving or renaming the file extensions of source file(s) listed by Signal output. The renamed file
extensions should be those that are not processed by UCC.

Note: To print function names in call stack, besides code, "-rdynamic" switch must be added to Makefile g++
command.

Below given is an example snapshot for signal 11.

11.4 Stack Dumps

Stack Dumps may happen occasionally when an internal error is found during detailed parsing of a given
source file. UCC will output the information. Metrics for the named source file are likely incomplete and
misleading. UCC continues processing with the next source file. See below for an example.

UCC User Manual v.2018.07 ¨ Center for Systems and Software Engineering ¨ University of Southern California

40

11.5 Errors

When errors occur, UCC will be unable to finish processing a file. But processing of other files proceeds. In
case of errors, one may want to debug to know more about that particular error, what caused it and if it’s a
user error, fix it.

Below given example shows a scenario when an error occurs. In this particular case, UCC is unable to count
the file.

11.6 Warnings

A warning message typically alerts the user of a condition that might cause a problem in the future. UCC
gives warnings when it comes across an unusual condition in whose case one would want to get rid of them
by making necessary changes during next execution. In most cases, warnings don’t cease the current
execution.

Below given is an example snapshot of when a warning is given by UCC.

12 References

[1] R.E. Park, “Software Size Measurement: A Framework for Counting Source Statements”,
Technical Report CMU/SEI-92-TR-20 ESC-TR-92-020, 1992.

[2] B. Boehm, C. Abts, S. Chulani, “Software development cost estimation approaches: A
survey”, Annals of Software Engineering, 2000.

