a0,

| SQL CodeCount™
Iclsiz)El

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

June , 2007

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
6/22/2007 1.0 Original Release CSSE
1/2/2013 1.1 Updated document template CSSE
12/03/2014 1.2 Added Cyclomatic Complexity CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 8
31 Executable Lines 8
3.11 Data Statements 8
3.1.2 Schema Statements 9
3.13 Transactional Statements 10
3.14 Conditional Statements 10
3.2 Declaration lines 12
4.0 Cyclomatic Complexity 13

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the program
source code based on a certain set of rules. SLOC is a key input for estimating project effort and is also used
to calculate productivity and other measurements.

1.2.Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending by a
carriage return or an end-of-file marker of the same line, and which excludes the blank and comment line.

1.3.Logical SLOC - Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

1.4.Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the SQL keywords that denote data declaration lines:

Character (String) Numeric DateTime Misc
CHAR (length) SMALLINT DATE BOOLEAN
CHARACTER (length) INT TIME [(SCALE)][WITH TIME ZONE] BLOB
VARCHAR (length) INTEGER TIMESTAMP [(SCALE)][WITH TIME ZONE]
CHARACTER VARYING (length) | FLOAT INTERVAL
REAL
DOUBLE

Table 1 Data Declaration Types

1.5. Compiler Directives — A statement that tells the compiler how to compile a program, but not what to compile.

SQL does not contain any compiler directives.

1.6.Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs, form
feed, carriage return, line feed, or their derivatives).

1.7.Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.
SQL comment delimiters are “/*”, “--“, or “{..}. A whole comment line may span one line and does not
contain any compilable source code. An embedded comment can co-exist with compilable source code on

the same physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8.Executable Line of code — A line that contains software instruction executed during runtime and on which a
breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.
2. An executable line of code may contain the following statements:
2.1.Commands which access the storage memory
2.2.Keywords which perform conditional operations

2.3.Data declaration (data) lines

Center for Systems and Software Engineering | 2013

2. ChecKklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

RO1

Data Statements:
SELECT

UPDATE

INSERT

DELETE

ALTER TABLE
ALTER USER
DECLARE

FETCH

CLOSE

LoGIcAL SLOC COUNTING RULES

1

Count Once

Each statement, including
nested queries, is counted
once per each occurrence.

R0O2

Schema Statements:
CREATE

CREATE TRIGGER
CREATE SEQUENCE
CREATE INDEX
CREATE SYNONYM
REPLACE
COMMENT
TRUNCATE
RENAME

DROP

GRANT

REVOKE

Count Once

Center for Systems and Software Engineering | 2013

RO3 | Transactional Statements: Count Once
COMMIT
ROLLBACK

RO4 | Conditional Statements: Count Once Conditional statements
WHERE appearing in combination
GROUP BY with other keywords are
ORDER BY counted once per each
HAVING occurrence.
LIMIT
JOIN
UNION

RO5 | IF Count Once CASE, END IF will not be
ELSIF counted since they must
ELSE used with others.
WHEN

RO6 | LOOP Count Once EXIT WHEN , LOOP, END
CONTINUE LOOP will not count.
EXIT
FOR

RO7 | EXCEPTION Count Once Do not count basic block.

RO8 | CREATE [OR REPLACE] Count Once One function or procedure
PROCEDURE AS only counts once.
CREATE [OR REPLACE]
FUNCTION AS

Center for Systems and Software Engineering

2013

3. Examples

EDS1 — SELECT

EXECUTABLE LINES

SELECT [ALL|DISTINCT] select-list

SELECT * FROM select-list

SELECT column FROM select-list WHERE
column = <criteria>

SELECT city FROM cities

WHERE city IN

(SELECT city FROM country
WHERE id="1")

Y =

EDS2 — UPDATE

UPDATE table SET set-list [WHERE
predicate]

UPDATE Customers
SET Customer.id ="1’
WHERE Customer.id="2’

EDS3 — INSERT

INSERT INTO table [(column-list)] VALUES
(value-list)

INSERT INTO table [(column-list)] (query-
specification)

INSERT INTO colors (cnum, color) VALUES
('C1', 'green’)

INSERT INTO location

SELECT ct.name, loc.type, 500
FROM ct, loc

WHERE ct.name="London” AND
loc.type="Europe'

ORr O R R

EDS4 — DELETE

DELETE FROM table [WHERE predicate]

DELETE FROM table WHERE column NOT
IN (SELECT column FROM table)

DELETE * FROM Customers
WHERE Id="1’

DELETE * FROM Customers NOT IN (SELECT
Customers FROM Regulars)

Center for Systems and Software Engineering | 2013

EDS5 — ALTER

ALTER TABLE <TABLE NAME> ALTER TABLE Customer
ADD PRIMARY KEY (SID);

ESS1 — CREATE

CREATE TABLE table-name ({column- CREATE TABLE locals 1
descr|constraint} [,{column- (ct VARCHAR(5) NOT NULL
descr|constraint}]...) PRIMARY KEY,

name VARCHAR(16),

city VARCHAR(16)

)
CREATE VIEW view-name CREATE VIEW supplied_parts AS SELECT * 1
[(column-list)] AS query FROM parts 1
[WITH [CASCADED | LOCAL] WHERE pnum IN (SELECT pnum FROM 2
CHECK OPTION] supplier) 0

ESS2 - DROP

DROP TABLE table-name DROP TABLE locals 1
{CASCADE | RESTRICT}

DROP VIEW view-name DROP VIEW supplied_parts 1
{CASCADE | RESTRICT}

ESS3 — GRANT

GRANT privilege-list ON [TABLE] object-list | GRANT SELECT,INSERT,UPDATE(parts) ON 1
TO user-list p TO mike 1

ESS4 — REVOKE

REVOKE REVOKE privilege-list ON [TABLE] object-list | REVOKE
FROM SELECT,INSERT,UPDATE(parts)
user-list ON p FROM mike

Center for Systems and Software Engineering | 2013

ETS1 - COMMIT

COMMIT [WORK] COMMIT 1

ETS2 — ROLLBACK

ROLLBACK [WORK] ROLLBACK 1

ECS1 - WHERE

SELECT SELECT * FROM Table
[FROM table_references] WHERE Table.id="1’
[WHERE where_condition]

[

ECS2 - GROUP BY

SELECT SELECT * FROM 1
[FROM table_references] Customers 0
[WHERE where_condition] GROUP BY ID 1
[GROUP BY
{col_name | expr | position}

[ASC | DESC

ECS3 — ORDER BY

SELECT * FROM select_list ORDER BY SELECT * FROM 1
column [ASC|DESC] Customers 0
ORDER BY Id ASC 1

ECS4 - LIMIT

10

Center for Systems and Software Engineering | 2013

SELECT
[FROM table_references]
[WHERE where_condition]
[LIMIT
{[offset,] row_count | row_count
OFFSET offset}]

SELECT * FROM
Customers
LIMIT 1

ECS5 - JOIN

table-1 { LEFT | RIGHT | FULL OUTER JOIN
table-2 ON predicate

SELECT count(*) as totalcount, trsuser.id,
trsuser.fname, trsuser.mortgage

FROM customers, loaninfo,trsuser
LEFT OUTER JOIN

leadSupplierCampaign

ON leadSupplierCampaign.CampaignlID

= customers.Referral

O O0OOr OO0R

ECS6 — UNION

table_query UNION [ALL] table_query
[ORDER BY column [ASC | DESC] [, ...]]

SELECT customers.name

FROM customers

WHERE customers.name LIKE 'T%'
UNION
SELECT public.name

FROM public

WHERE public.name LIKE 'T%'

R OR R RO R

DECLARATION OR DATA LINES

Center for Systems and Software Engineering | 2013

DDL1 - variable declaration

< name> < type> userid int(10),

addnewuser enum('1','0"),
permission enum('1','0'),
assignleadsupplier enum('1','0"),
addnewtsr enum('1','0"),
assigntsrls enum('1','0"),
leadsquery enum('1','0'),
postedleadsall enum('1','0'),
postedleadsassigned enum('1','0'),
leadpurchasers enum('1','0"),
accountexecutives enum('1','0'),
Isall enum('1','0"),

Isassigned enum('1','0")

PR R RRPRRPRRRRRR

12

Center for Systems and Software Engineering | 2013

4. Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program. It is measured for each
function, procedure, or method according to each specific program language. This metric indicates the risk of program
complexity and also determines the number of independent test required to verify program coverage.

The cyclomatic complexity is computed by counting the number of decisions plus one for the linear path. Decisions are
determined by the number of conditional statements in a function. A function without any decisions would have a
cyclomatic complexity of one. Each decision such as an if condition or a for loop adds one to the cyclomatic complexity.
Note that in PL/SQL, all code is treated as a single main function and hence Cyclomatic Complexity is calculated with the
assumption that there is only a single function to process.

The cyclomatic complexity metric v(G) was defined by Thomas McCabe. Several variations are commonly used but are
not included in the UCC. The modified cyclomatic complexity (CC3) counts the switch blocks as a single decision rather
than counting each case. The strict or extended cyclomatic complexity (CC2) includes boolean operators within
conditional statements as additional decisions.

Cyclomatic Complexity Risk Evaluation

1-10 A simple program, without much risk
11-20 More complex, moderate risk

21-50 Complex, high risk program

> 50 Untestable program, very high risk

For PL/SQL, the following table lists the conditional keywords used to compute cyclomatic complexity.

Statement CC Count Rationale

If +1 if adds a decision

Elsif +1 else if adds a decision

Else 0 Decision is at the if statement

case when +1 per when Each when adds a decision — not the case

case default 0 Decision is at the when statements

For +1 for adds a decision at loop start

while +1 while adds a decision at loop start or at end of do loop

13

