

SQL CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

June , 2007

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

6/22/2007 1.0 Original Release CSSE

1/2/2013 1.1 Updated document template CSSE

12/03/2014 1.2 Added Cyclomatic Complexity CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Data Statements

3.1.2 Schema Statements

3.1.3 Transactional Statements

3.1.4 Conditional Statements

3.2 Declaration lines

8

8

8

9

10

10

12

4.0 Cyclomatic Complexity 13

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the program

source code based on a certain set of rules. SLOC is a key input for estimating project effort and is also used

to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending by a

carriage return or an end-of-file marker of the same line, and which excludes the blank and comment line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the SQL keywords that denote data declaration lines:

Character (String) Numeric DateTime Misc

CHAR (length) SMALLINT DATE BOOLEAN

CHARACTER (length) INT TIME [(SCALE)][WITH TIME ZONE] BLOB

VARCHAR (length) INTEGER TIMESTAMP [(SCALE)][WITH TIME ZONE]

CHARACTER VARYING (length) FLOAT INTERVAL

 REAL

 DOUBLE

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to compile.

SQL does not contain any compiler directives.

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs, form

feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

SQL comment delimiters are “/*”, “--“, or “{..}”. A whole comment line may span one line and does not

contain any compilable source code. An embedded comment can co-exist with compilable source code on

the same physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

2. An executable line of code may contain the following statements:

2.1. Commands which access the storage memory

2.2. Keywords which perform conditional operations

2.3. Data declaration (data) lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 Data Statements:
SELECT
UPDATE
INSERT
DELETE
ALTER TABLE
ALTER USER
DECLARE
FETCH
CLOSE

1 Count Once Each statement, including
nested queries, is counted
once per each occurrence.

R02 Schema Statements:
CREATE
CREATE TRIGGER
CREATE SEQUENCE
CREATE INDEX
CREATE SYNONYM
REPLACE
COMMENT
TRUNCATE
RENAME
DROP
GRANT
REVOKE

2 Count Once

Center for Systems and Software Engineering 2013

7

R03 Transactional Statements:
COMMIT
ROLLBACK

3 Count Once

R04 Conditional Statements:
WHERE
GROUP BY
ORDER BY
HAVING
LIMIT
JOIN
UNION

4 Count Once Conditional statements
appearing in combination
with other keywords are
counted once per each
occurrence.

R05 IF
ELSIF
ELSE
WHEN

5 Count Once CASE, END IF will not be
counted since they must
used with others.

R06 LOOP
CONTINUE
EXIT
FOR

6 Count Once EXIT WHEN , LOOP, END
LOOP will not count.

R07 EXCEPTION 7 Count Once Do not count basic block.

R08 CREATE [OR REPLACE]
PROCEDURE AS
CREATE [OR REPLACE]
FUNCTION AS

8 Count Once One function or procedure
only counts once.

Center for Systems and Software Engineering 2013

8

3. Examples

EXECUTABLE LINES

DATA Statements

(Query and Modify Tables and Columns)

EDS1 – SELECT

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

SELECT [ALL|DISTINCT] select-list

SELECT * FROM select-list

SELECT column FROM select-list WHERE
column = <criteria>

 SELECT city FROM cities
WHERE city IN
(SELECT city FROM country
 WHERE id=’1’)

1
1
1
1

EDS2 – UPDATE

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

UPDATE table SET set-list [WHERE
predicate]

UPDATE Customers
SET Customer.id =’1’
WHERE Customer.id=’2’

1
1
1

EDS3 – INSERT

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

INSERT INTO table [(column-list)] VALUES
(value-list)

INSERT INTO table [(column-list)] (query-
specification)

INSERT INTO colors (cnum, color) VALUES
('C1', 'green')

INSERT INTO location
SELECT ct.name, loc.type, 500
FROM ct, loc
WHERE ct.name=”London” AND
loc.type='Europe'

1
0

1
1
0
1
0

EDS4 – DELETE

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

DELETE FROM table [WHERE predicate]

DELETE FROM table WHERE column NOT
IN (SELECT column FROM table)

DELETE * FROM Customers
WHERE Id=’1’

DELETE * FROM Customers NOT IN (SELECT
Customers FROM Regulars)

1
1

1
1

Center for Systems and Software Engineering 2013

9

EDS5 – ALTER

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

ALTER TABLE <TABLE NAME>

ALTER TABLE Customer
ADD PRIMARY KEY (SID);

1
0

SCHEMA Statements

(Maintain Schema – Catalog)

ESS1 – CREATE

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

CREATE TABLE table-name ({column-
descr|constraint} [,{column-
descr|constraint}]...)

CREATE VIEW view-name
[(column-list)] AS query
 [WITH [CASCADED|LOCAL]
CHECK OPTION]

CREATE TABLE locals
(ct VARCHAR(5) NOT NULL
 PRIMARY KEY,
 name VARCHAR(16),
 city VARCHAR(16)
)

CREATE VIEW supplied_parts AS SELECT *
FROM parts
WHERE pnum IN (SELECT pnum FROM
supplier)

1

1
1
2
0

ESS2 – DROP

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

DROP TABLE table-name
{CASCADE|RESTRICT}

DROP VIEW view-name
{CASCADE|RESTRICT}

DROP TABLE locals

DROP VIEW supplied_parts

1

1

ESS3 – GRANT

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

GRANT privilege-list ON [TABLE] object-list
TO user-list

GRANT SELECT,INSERT,UPDATE(parts) ON
p TO mike

1
1
0

ESS4 – REVOKE

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

REVOKE

REVOKE privilege-list ON [TABLE] object-list
FROM
user-list

REVOKE
SELECT,INSERT,UPDATE(parts)
ON p FROM mike

Center for Systems and Software Engineering 2013

10

TRANSACTIONAL Statements

(Maintain Schema – Catalog)

ETS1 – COMMIT

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

COMMIT [WORK]

COMMIT

1

ETS2 – ROLLBACK

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

ROLLBACK [WORK]

ROLLBACK

1

CONDITIONAL Statements

ECS1 – WHERE

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

SELECT
 [FROM table_references]
 [WHERE where_condition]

SELECT * FROM Table
WHERE Table.id=’1’

1
1

ECS2 – GROUP BY

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

SELECT
 [FROM table_references]
 [WHERE where_condition]
 [GROUP BY
 {col_name | expr | position}
 [ASC | DESC

SELECT * FROM
Customers
GROUP BY ID

1
0
1

ECS3 – ORDER BY

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

SELECT * FROM select_list ORDER BY
column [ASC|DESC]

SELECT * FROM
Customers
ORDER BY Id ASC

1
0
1

ECS4 – LIMIT

Center for Systems and Software Engineering 2013

11

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

SELECT
 [FROM table_references]
 [WHERE where_condition]
 [LIMIT
 {[offset,] row_count | row_count
 OFFSET offset}]

SELECT * FROM
Customers
LIMIT 1

1
0
1

ECS5 – JOIN

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

table-1 { LEFT | RIGHT | FULL OUTER JOIN

table-2 ON predicate

SELECT count(*) as totalcount, trsuser.id,
trsuser.fname, trsuser.mortgage
 FROM customers, loanInfo,trsuser
LEFT OUTER JOIN
 leadSupplierCampaign
 ON leadSupplierCampaign.CampaignID
 = customers.Referral

1
0
0
1
0
0
0

ECS6 – UNION

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

table_query UNION [ALL] table_query
[ORDER BY column [ASC | DESC] [, ...]]

SELECT customers.name
 FROM customers
 WHERE customers.name LIKE 'T%'
 UNION
 SELECT public.name
 FROM public
 WHERE public.name LIKE 'T%'

1
0
1
1
1
0
1

DECLARATION OR DATA LINES

Center for Systems and Software Engineering 2013

12

DDL1 – variable declaration

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

< name> < type>

userid int(10),
addnewuser enum('1','0'),
permission enum('1','0'),
assignleadsupplier enum('1','0'),
addnewtsr enum('1','0'),
assigntsrls enum('1','0'),
leadsquery enum('1','0'),
postedleadsall enum('1','0'),
postedleadsassigned enum('1','0'),
leadpurchasers enum('1','0'),
accountexecutives enum('1','0'),
lsall enum('1','0'),
lsassigned enum('1','0')

1
1
1
1
1
1
1
1
1
1
1
1
1

Center for Systems and Software Engineering 2013

13

4. Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program. It is measured for each
function, procedure, or method according to each specific program language. This metric indicates the risk of program
complexity and also determines the number of independent test required to verify program coverage.

The cyclomatic complexity is computed by counting the number of decisions plus one for the linear path. Decisions are
determined by the number of conditional statements in a function. A function without any decisions would have a
cyclomatic complexity of one. Each decision such as an if condition or a for loop adds one to the cyclomatic complexity.
Note that in PL/SQL , all code is treated as a single main function and hence Cyclomatic Complexity is calculated with the
assumption that there is only a single function to process.

The cyclomatic complexity metric v(G) was defined by Thomas McCabe. Several variations are commonly used but are
not included in the UCC. The modified cyclomatic complexity (CC3) counts the switch blocks as a single decision rather
than counting each case. The strict or extended cyclomatic complexity (CC2) includes boolean operators within
conditional statements as additional decisions.

Cyclomatic Complexity Risk Evaluation

1-10 A simple program, without much risk

11-20 More complex, moderate risk

21-50 Complex, high risk program

> 50 Untestable program, very high risk

For PL/SQL, the following table lists the conditional keywords used to compute cyclomatic complexity.

Statement CC Count Rationale

If +1 if adds a decision

Elsif +1 else if adds a decision

Else 0 Decision is at the if statement

case when +1 per when Each when adds a decision – not the case

case default 0 Decision is at the when statements

For +1 for adds a decision at loop start

while +1 while adds a decision at loop start or at end of do loop

