O,

3. Ada CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

July , 2007

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
7/25/2007 1.0 Original Release CSSE
1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.1.3 Jump Statements 8
3.14 Expression Statements 9
3.15 Block Statements 10
3.2 Declaration lines 11
3.3 Compiler directives 12
4.0 Notes on Special Character Processing 13

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#, Ada) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and
style conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the Ada keywords that denote data declaration lines:

program body subt ype renanes
function private array linmted
package separate record use
t ask const ant access with
generic type decl are new

Table 1 Data Declaration Types
Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.

The following table lists the Ada keywords that denote compiler directive lines:

pragnma interface pack storage_unit
controlled list page suppr ess

el aborate nenory_si ze priority system nane
inline optim ze shar ed

Table 2 Compiler Directives
Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).
Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.
Ada comment delimiters are “--”. A whole comment line may span one line and does not contain any
compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:
= Selection statements (if, case)

= |teration statements (loop)

= Empty statements (one or more “;”)

= Jump statements (return, goto, exit)

= Expression statements (function calls, assignment statements, operations, etc.)
= Block statements

An executable line of code may not contain the following statements:

= Compiler directives

= Data declaration (data) lines

= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One per line Defined in 1.8
Non-executable Lines
Declaration (Data) Lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included
Embedded 5 Not Included
Blank lines 6 Not Included Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | Statements ending 1 Count once per statement, including Semicolons as part of
with a semicolon empty statement parameter list in
function, procedure or
task entry definition is
not counted

Center for Systems and Software Engineering

2013

3. Examples

EXECUTABLE LINES

ESS1 - if-elsif-else statements

SELECTION Statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
if <boolean expression> then
<stat ts>
s.a ements if x /=0 then 0
end if; .
Put_Line (“non-zero”); 1
if <boolean expression> then end if; 1
<stat t>
statemen if x > 0 THEN 0
else Put_Line (“positive”); 1
<statement> — P !
. else 0
end if; N "
Put_Line (“negative”); 1
if <boolean expression> then end if; 1
<stat >
.s atements . if x =0 then 0
elsif <boolean expression> then .
Put_Line (“zero”); 1
<statements> ;
elsif x > 0 then 0
olse Put_Line (“positive”); 1
else 0
<statements> o .
ond if: Put_Line (“negative”); 1
’ end if; 1
if x /=0 and x>0 then 0
o . Put (x); 1
NOTE: complexity is not considered, :
H H “" ” “" 2! end If; 1
i.e. multiple “and” or “or” as part of
the expression.
ESS2 — case statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
case <expression> is case number is 0
when <choicel> => when1 |11 => 0
<statements> fool(); 1
when <choice2> => when 2 => 0
<statements> foo2(); 1
when 3: => 0
when <choiceN> => foo3(); 1
<statements> when others => 0
when others => Put_Line (“invalid”); 1
<statements> end case; 1
end case;

Center for Systems and Software Engineering

2013

ESS3 - exception statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
Exception Exception 0
when <exception_choicel> => when Constraint_Error => 0
<statements> Put_Line (“range error”); 1
when <exception_choice2> => when Storage_Error => 0
<statements> Put_Line (“out of RAM"); 1
when others => 0
when others => Put_Line (“other error”); 1
<statements> raise; -- raise exception 1
end; end; 1
ITERATION Statements
EIS1 - Simple Loop
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
loop loop 0
<statements> null; 1
end loop; end loop; 1
EIS2 — While Loop
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
while <boolean expression> loop while i < 10 loop 0
<statements> Put (i); 1
end loop; i=i+l; 1
end loop; 1
EIS3 - For Loop
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
for <loop counter> in <range> loop foriin1..5loop 0
<statements> Put (i); 1
end loop; end loop; 1
JUMP Statements

(are counted as they invoke action-pass to the next statement)

EJS1 - return

GENERAL EXAMPLE

SPECIFIC EXAMPLE

SLOC COUNT

return <expression>;

ifi =0 then
return null;
end if;

[N

Center for Systems and Software Engineering | 2013

EJS2 - goto, label

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<<loop1>> 0
goto label, X:=x+1; 1
if (x <y) then 0
<<label>> goto loopl; 1
end if; 1
EJS3 - exit
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
loop 0
if x <0 then 0
exit; exit; 1
end if;
end loop; L
! 1
loop 0
exit when <boolean expression>; exit when x < 0; 1
end if;
1
EXPRESSION Statements
EES1 - function and procedure call
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<func_name> [(<params>)]; Put_Line (name); 1
EES2 — assighment statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<name> := <value>; X:=y; 1
a:=1,b:=2;c:=3; 3

EES3 — empty statement (is cou

nted and considered to be a placehol

der for something to call attention)

GENERAL EXAMPLE

SPECIFIC EXAMPLE

SLOC COUNT

“w.n

one or more “;” in succession

1 per each

Center for Systems and Software Engineering | 2013

BLOCK Statements
EBS1 - simple block (related statements treated as a unit)
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
-- start of block -- start of block 0
begin begin 0
<statements> Put _Line (“Hello”); 1
end; end; 1
-- end of block -- end of block 0
EBS1 — procedure definition
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
procedure <proc_name> [(<params> | procedure foo (i:in 0
)] is Integer) is 0
<declarations> begin 0
begin Put (i); 1
<statements> end foo; 1
end [<proc_name>];
EBS1 — function definition
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
function <func_name> [(<params>)] | function sum (a, b :in 0
return <ret_type> is Float) return Float is 0
<declarations> begin 0
begin returna + b; 1
<statements> end sum; 1
end [<func_name>];
EBS1 — task definition
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
task body <task _name> is task body activity is 0
<declarations> begin 0
begin loop 0
<statements> exit; 1
end [<task_name>]; end loop; 1
end; 1

10

Center for Systems and Software Engineering

2013

EBS1 — package definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
package body <pkg_name> is EZCI::ge body foo_pke s 0
<declarations> & . 0
. procedure foo_proc is
begin begin 0
<statements> Put_Line(“Foo Pkg”); 0
end [<pkg_name>]; 1
end foo_proc;
1
end;
1
DECLARATION OR DATA LINES
DDL1 — procedure specification
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
procedure <proc_name> [(<params> | procedure foo (p :in 0
); Integer); 1
DDL1 - function specification
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
function <func_name> [(<params>)] | function foo return Integer; 1
return <ret_type>;
DDL1 - task specification
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
task <task_name>; task action; 1
DDL1 - package specification
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
package foo is 0
package <pkg_name> is procedure fool (x : Float); 1
<declarations> function foo2 (x : Integer; 0
end [<pkg_name>]; y : Float) 0
return Float; 1
end area; 1

11

Center for Systems and Software Engineering

2013

DDL1 - enumeration type definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
type <name> is (<enumeration_list>); | type answer is (‘y’, ‘n’); 1
DDL1 - subtype definition
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
subtype <type _name> is <type> subtype digits is Integer 0
. range0..9;
range <discrete_range>; 1
DDL1 - record definition
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
type <name>is type position is 0
record record 0
<record structure> X : Integer; 1
end record; y : Integer; 1
end record; 1
DDL1 - variable declaration
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
declare declare 0
<name> : <type>; amount, price : Float; 1
index : Integer; 1
DDL1 - task entry
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
entry <entry_name> [(<params>)]; entry foo; 1
COMPILER DIRECTIVES
CDL1 - directive types
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
pragma <name> [(<params>)]; pragma Export (C, foo, “foo”); 1

12

Center for Systems and Software Engineering

2013

4. Notes on Special Character Processing

1) Quotes: Quotes are of three types
Start of Quotes: T\
End of Quotes: "\
Escape Rear Quotes: '\"'

2) Four types of file extensions are recognized for Ada: .ada, .a, .adb, .ads

13

