

Ada CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

July , 2007

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

7/25/2007 1.0 Original Release CSSE

1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.1.5 Block Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

8

8

9

10

11

12

4.0 Notes on Special Character Processing 13

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#, Ada) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and

style conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the Ada keywords that denote data declaration lines:

program body subtype renames
function private array limited
package separate record use
task constant access with
generic type declare new

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Ada keywords that denote compiler directive lines:

pragma interface pack storage_unit
controlled list page suppress
elaborate memory_size priority system_name
inline optimize shared

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Ada comment delimiters are “--”. A whole comment line may span one line and does not contain any

compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, case)

� Iteration statements (loop)

� Empty statements (one or more “;”)

� Jump statements (return, goto, exit)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One per line Defined in 1.8

Non-executable Lines

Declaration (Data) Lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

On their own lines 4 Not Included

Embedded 5 Not Included

Blank lines 6 Not Included Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 Statements ending

with a semicolon

1 Count once per statement, including

empty statement

Semicolons as part of

parameter list in

function, procedure or

task entry definition is

not counted

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statements

ESS1 – if-elsif-else statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if <boolean expression> then

 <statements>

end if;

if <boolean expression> then

 <statement>

else

 <statement>

end if;

if <boolean expression> then

 <statements>

elsif <boolean expression> then

 <statements>

…

else

 <statements>

end if;

NOTE: complexity is not considered,

i.e. multiple “and” or “or” as part of

the expression.

if x /= 0 then

Put_Line (“non-zero”);

end if;

if x > 0 THEN

Put_Line (“positive”);

else

Put_Line (“negative”);

end if;

if x = 0 then

Put_Line (“zero”);

elsif x > 0 then

Put_Line (“positive”);

else

Put_Line (“negative”);

end if;

if x /= 0 and x > 0 then

Put (x);

end if;

0

1

1

0

1

0

1

1

0

1

0

1

0

1

1

0

1

1

ESS2 – case statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

case <expression> is

 when <choice1> =>

 <statements>

 when <choice2> =>

 <statements>

 …

 when <choiceN> =>

 <statements>

 when others =>

 <statements>

end case;

case number is

 when 1 | 11 =>

 foo1();

 when 2 =>

 foo2();

 when 3: =>

 foo3();

 when others =>

 Put_Line (“invalid”);

end case;

0

0

1

0

1

0

1

0

1

1

Center for Systems and Software Engineering 2013

8

ESS3 - exception statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Exception

 when <exception_choice1> =>

 <statements>

 when <exception_choice2> =>

 <statements>

 …

 when others =>

 <statements>

end;

Exception

 when Constraint_Error =>

 Put_Line (“range error”);

 when Storage_Error =>

 Put_Line (“out of RAM”);

 when others =>

 Put_Line (“other error”);

 raise; -- raise exception

end;

0

0

1

0

1

0

1

1

1

ITERATION Statements

EIS1 – Simple Loop

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

loop

 <statements>

end loop;

loop

 null;

end loop;

0

1

1

EIS2 – While Loop

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while <boolean expression> loop

 <statements>

end loop;

while i < 10 loop

 Put (i);

 i := i + 1;

end loop;

0

1

1

1

EIS3 – For Loop

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for <loop counter> in <range> loop

 <statements>

end loop;

for i in 1 .. 5 loop

 Put (i);

end loop;

0

1

1

JUMP Statements

(are counted as they invoke action-pass to the next statement)

EJS1 - return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return <expression>;

if i = 0 then

 return null;

end if;

0

1

1

Center for Systems and Software Engineering 2013

9

EJS2 – goto, label

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

goto label;

…

<<label>>

<<loop1>>

 x := x + 1;

 if (x < y) then

 goto loop1;

 end if;

0

1

0

1

1

EJS3 - exit

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

exit;

exit when <boolean expression>;

loop

 if x < 0 then

 exit;

 end if;

end loop;

loop

 exit when x < 0;

end if;

0

0

1

1

1

0

1

1

EXPRESSION Statements

EES1 – function and procedure call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<func_name> [(<params>)];

Put_Line (name); 1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> := <value>;

x := y;

a := 1; b := 2; c := 3;

1

3

EES3 – empty statement (is counted and considered to be a placeholder for something to call attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

one or more “;” in succession

;

1 per each

Center for Systems and Software Engineering 2013

10

BLOCK Statements

EBS1 – simple block (related statements treated as a unit)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

-- start of block

begin

 <statements>

end;

-- end of block

-- start of block

begin

 Put _Line (“Hello”);

end;

-- end of block

0

0

1

1

0

EBS1 – procedure definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

procedure <proc_name> [(<params>

)] is

 <declarations>

begin

 <statements>

end [<proc_name>];

procedure foo (i : in

 Integer) is

begin

 Put (i);

end foo;

0

0

0

1

1

EBS1 – function definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

function <func_name> [(<params>)]

 return <ret_type> is

 <declarations>

begin

 <statements>

end [<func_name>];

function sum (a, b : in

 Float) return Float is

begin

 return a + b;

end sum;

0

0

0

1

1

EBS1 – task definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

task body <task_name> is

 <declarations>

begin

 <statements>

end [<task_name>];

task body activity is

begin

 loop

 exit;

 end loop;

end;

0

0

0

1

1

1

Center for Systems and Software Engineering 2013

11

EBS1 – package definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

package body <pkg_name> is

 <declarations>

begin

 <statements>

end [<pkg_name>];

package body foo_pkg is

begin

 procedure foo_proc is

 begin

 Put_Line(“Foo Pkg”);

 end foo_proc;

end;

0

0

0

0

1

1

1

DECLARATION OR DATA LINES

DDL1 – procedure specification

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

procedure <proc_name> [(<params>

)];

procedure foo (p : in

 Integer);

0

1

DDL1 – function specification

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

function <func_name> [(<params>)]

 return <ret_type>;

function foo return Integer; 1

DDL1 – task specification

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

task <task_name>;

task action;

1

DDL1 – package specification

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

package <pkg_name> is

 <declarations>

end [<pkg_name>];

package foo is

 procedure foo1 (x : Float);

 function foo2 (x : Integer;

 y : Float)

 return Float;

end area;

0

1

0

0

1

1

Center for Systems and Software Engineering 2013

12

DDL1 – enumeration type definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

type <name> is (<enumeration_list>);

type answer is (‘y’, ‘n’); 1

DDL1 – subtype definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

subtype <type_name> is <type>

 range <discrete_range>;

subtype digits is Integer

 range 0 .. 9;

0

1

DDL1 – record definition

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

type <name> is

 record

 <record structure>

 end record;

type position is

 record

 x : Integer;

 y : Integer;

 end record;

0

0

1

1

1

DDL1 – variable declaration

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

declare

 <name> : <type>;

declare

 amount, price : Float;

 index : Integer;

0

1

1

DDL1 – task entry

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

entry <entry_name> [(<params>)];

entry foo;

1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

pragma <name> [(<params>)];

pragma Export (C, foo, “foo”); 1

Center for Systems and Software Engineering 2013

13

4. Notes on Special Character Processing

1) Quotes: Quotes are of three types

 Start of Quotes: "\""

 End of Quotes: "\""

 Escape Rear Quotes: '\"'

2) Four types of file extensions are recognized for Ada: .ada, .a, .adb, .ads

