COBOL CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2015

Center for Systems and Software Engineering | 2015

Revision Sheet

Date Version Revision Description Author
Gurdeep Gahir,
10/01/2010 1.0 Initial Draft Virendra Chandak,
Harsh Gupta
Gurdeep Gahir,
11/03/2010 1.1 Updated with examples Virendra Chandak,
Harsh Gupta
12/228/2015 2.0 2015.12 first public release Randy Maxwell

Center for Systems and Software Engineering | 2015

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 Overview 4
1.2 SLOC 4
1.3 Physical SLOC 4
1.4 Logical SLOC 4
1.5 Data declaration line 4
1.6 Compiler directive 5
1.7 Executable keywords 5
1.8 Blank line 5
1.9 Comment line 5
1.10 Executable line of code 6
2.0 Checklist for source statement counts 8
3.0 Examples of logical SLOC counting 9
3.1 Executable Lines 9
3.1.1Selection Statements 9
3.1.2Iteration Statements 10
3.1.3Jump Statements 10
3.1.4Expression Statements 10
3.1.5Block Statements 11
3.2 Declaration lines 11
3.3 Compiler directives 11
4.0 Notes on Special Character Processing 13

Center for Systems and Software Engineering | 2015

1.1.

1.2.

1.3.

1.4.

1.5.

Definitions

Overview — This document gives specific information of what the Unified Code Count (UCC) COBOL parser
will do in terms of various keywords and other metrics. It is hoped that the metrics gathered by UCC will be

of use to the COBOL community.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

Logical SLOC - Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent. In COBOL, logical SLOC terminate by a period “.” or carriage

return.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the COBOL keywords that denote data declaration lines:

Figurative Constants Picture Symbol

Space High-Values 9

Spaces Low-Value X

Zero Low-Values A

Zeroes All \Y

Quote S

Quotes Data Keywords
High-Value PIC

PICTURE

Table 1 Data Declaration Types

Center for Systems and Software Engineering | 2015

1.6.

1.7.

1.8.

1.9.

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the COBOL keywords that denote compiler directives:

BASIS CBL *CBL CONTROL
*CONTROL CoPY DEBUGGING DELETE
EJECT ENTER INSERT LABEL
PROCEDURE PROCESS READY RELOAD
REPLACE RESET RESET TRACE SERVICE
SERVICE RELOAD | SKIP1 SKIP2 SKIP3
TITLE TRACE USE USING

Table 2 Compiler Directives

Executable Keywords — keywords that are reserved with predefined characteristics with respect to syntax

and meaning (semantic or otherwise) to enable language specific features.

The following table lists the COBOL executable keywords:

break case catch def do
else finally for if match
new return super this throw
try while

Table 3 Executable Keywords

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

COBOL comment delimiters are ‘, *, and /. An asterisk (*) comment delimiter is printed in the output listing,
immediately following the last preceding line. A slash (/) comment delimiter is printed on the first line of the

next page, and the current page of the output listing is ejected.

Center for Systems and Software Engineering | 2015

1.10. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

e An executable line of code may contain the following program control statements:

= Arithmetic statements (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT)

. Data movement statements

ACCEPT INITIALIZE INSPECT MOVE SET

STRING UNSTRING XML GENERATE | XML PARSE

» Decision statements (IF, EVALUATE)

* Input-output statements

ACCEPT CLOSE DELETE DISPLAY OPEN

READ REWRITE START STOP WRITE

» Ordering statements (MERGE, RELEASE, RETURN, SORT)

= Program or method linkage statements (CALL, INVOKE)

* Program or method statements (CALL, CANCEL, INVOKE)

* Table-handling statement (SEARCH)

= Iteration statements (PERFORM, TIMES ... PERFORM, UNTIL ... PERFORM, VARYING ... PERFORM)

= Empty statements (CONTINUE)

* Jump statements (EXIT, GO TO, PERFORM, ALTER)

= Ending statements (STOP RUN, EXIT PROGRAM, EXIT METHOD, GOBACK)

Center for Systems and Software Engineering | 2015

An executable line of code may not contain the following statements:

= Compiler directives

= Data declaration (data) lines

= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2015

2.

Checklist for source statement counts

PHYsIcAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Empty Comments 6 NI
Blank Lines 7 NI Defined in 1.6

IF-THEN-ENDIF,

LoGicAL SLOC COUNTING RULES

RO1 | IF-THEN-ELSE-ENDIF, 1 COUNT ONCE
IF-THEN-ELSEIF-ENDIF
“PERFORM ..TIMES”,
RO2 “PERFORM.. UNTIL” 2 COUNT ONCE
STATEMENT
RO3 STATEMENTS ENDING BY “.” 3 COUNT ONCE PER
STATEMENT
COUNT ONCE PER
RO4 | COMPILER DIRECTIVES 4 DIRECTIVE

Center for Systems and Software Engineering | 2015

3.Examples

‘ Executable Lines \

ESS1 —if, else if, else and nested if statements

IF <CONDITION>
THEN
<STATEMENTS>
END-IF

IF <CONDITION>
THEN
<STATEMENTS>
ELSE
<STATEMENTS>
END-IF

IF <CONDITION>
THEN

<STATEMENTS>
ELSEIF <CONDITION2>
<STATEMENTS>

ELSE

<STATEMENTS>
END-IF

IF VarG = 14 THEN
DISPLAY "First"
END-IF

IF VarG = 14 THEN
DISPLAY "First"
ELSE

DISPLAY "Second"
END-IF

IF VarG = 14 THEN
DISPLAY "First"
ELSE IF VarG = 15
DISPLAY "Second"
ELSE

DISPLAY “Third”
END-IF

e

OrFR, O R, P

OFRr ORFB P P =B

ESS2 — EVALUATE and nested EVALUATE statements

EVALUATE
<EXPRESSION>
ALSO
<EXPRESSION>
WHEN
<CONDITIONS>
END-EVALUATE

EVALUATE TRUE ALSO Position
WHEN L-Arrow ALSO 2 THRU 10
SUBTRACT 1 FROM Position
WHEN R-Arrow ALSO 1 THRU 9
ADD 1 TO Position
END-EVALUATE

[J = Y Y S SRy

Center for Systems and Software Engineering | 2015

EIS1 — perform

PERFORM <PROC> PERFORM S1 3 TIMES 1

<COUNT> TIMES END PERFORM 0

END PERFORM

PERFORM <COUNT> PERFORM 3 TIMES

TIMES DISPLAY "Finished in” 1

<STATEMENTS> END PERFORM 1

END PERFORM 0

Z;EESEZX_‘E};:EST PERFORM WITH TEST BEFORE 1
UNTIL EndOfStudentFile 1

UNTIL <CONDITION> WE .

END PERFORM DISPLAY "Finished in 1
END-PERFORM 0

EJS1-GOTO

GOTO <LABEL> GOTO READX 1

EJS2 — EXIT

EXIT

EES1 — perform

PERFORM <PROC> PERFORM S1 1

EES2 — perform thru

PERFORM <PROC1> PERFORM S1 1
THRU <PROC2> THRU S3

10

Center for Systems and Software Engineering

2015

EES3 — empty statement

o n

one or more “.” in succession

EBS1 — block = related statements treated as a unit

1 per each

COBOL does not have block statements

COBOL Declarations or Data Lines

DDL1 - elementary items

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
01 <NAME> PIC <RANGE> 01 GrossPay PIC 9(5)V99 1
VALUE <VALUE> VALUE ZEROS.
DDL2 —group items
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<LEVEL> <NAME> 01 StudentDetails. 0
<LEVEL> <NAME> (RANGE) 02 Studentld PIC 9(7). 1
02 StudentName. 0
03 FirstName PIC X(1). 1
03 Middlelnitial PIC X. 1
03 Surname PIC X(5). 1
. 02 DateOfBirth. (0]
<LEVEL> <NAME> (RANGE) 03 DayOfBirth PIC 99. 1
03 MonthOfBirth PIC 99. 1
03 YearOfBirth PIC 9(4). 1
02 CourseCode PIC X(4). 1
COBOL Compiler Directives
CDL1 - USE FOR
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
USE FOR USE FOR DEBUGGING 1
DEBUGGING

11

Center for Systems and Software Engineering

2015

CDL2 — USE AFTER

GENERAL EXAMPLE

SPECIFIC EXAMPLE

SLOC COUNT

USE <ITEM> AFTER
<EXCEPTIONTYPE>
EXCEPTION/ERROR

USE GLOBAL AFTER

STANDARD
EXCEPTION

12

Center for Systems and Software Engineering | 2015

4.Notes on Special Character Processing

<Extra points related to special character processing for the current language document>

13

