

Java CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

June , 2007

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

6/22/2007 1.0 Original Release CSSE

1/2/2013 1.1 Updated document template CSSE

1/14/2013 1.2 Added cyclomatic complexity CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.1.5 Block Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

8

9

10

10

11

11

4.0 Cyclomatic Complexity 12

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the Java keywords that denote data declaration lines:

abstract boolean const int long

byte short char extends float

double implements class interface native

 void static package private public

protected operator volatile template

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Java keywords that denote compiler directive lines:

package import

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Java comment delimiters are “//” and “/*”. A whole comment line may span one line and does not contain

any compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, ? operator, switch)

� Iteration statements (for, while, do-while)

� Empty statements (one or more “;”)

� Jump statements (return, goto, break, continue, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “while”, “foreach” or “if”

statement

1 Count Once “while” is an independent

statement.

R02 do {…} while (…); statement 2 Count Once Braces {…} and semicolon ;

used with this statement

are not counted.

R03 Statements ending by a

semicolon

3 Count once per statement,

including empty statement

Semicolons within “for”

statement are not

counted. Semicolons used

with R01 and R02 are not

counted.

R04 Block delimiters, braces {…} 4 Count once per pair of braces

{..}, except where a closing

brace is followed by a

semicolon, i.e. };or an

opening brace comes after a

keyword “else”.

Braces used with R01 and

R02 are not counted.

Function definition is

counted once since it is

followed by {…}.

R05 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, else if, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if (<boolean expression>)

 <statements>;

if (<boolean expression>)

 <statements>;

else <statements>;

if (<boolean expression>)

 <statements>;

else if (<boolean expression>)

 <statements>;.

.

.

else <statements>;

NOTE: complexity is not considered, i.e.

multiple “&&” or “||” as part of the

expression.

if (x != 0)

 System.out.print (“non-zero”);

if (x > 0)

 System.out.print (“positive”);

else

 System.out.print (“negative”);

if (x == 0)

 System.out.print (“zero”);

else if (x > 0)

 System.out.print (“positive”);

else {

 System.out.print (“negative”);

}

if ((x != 0) && (x > 0))

 System.out.print (x);

1

1

1

1

0

1

1

1

1

1

0

1

0

1

1

ESS2 – ? operator

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Exp1?Exp2:Exp3

x > 0 ? System.out.print (“positive”) :

System.out.print (“negative”);

1

Center for Systems and Software Engineering 2013

8

ESS3 – switch and nested switch statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

switch (<expression>)

{

 case <constant 1> :

 <statements>;

 break;

 default

 <statements>;

}

switch (number)

{

 case 1:

 foo1();

 break;

 default

 System.out.print (“invalid case”);

}

1

0

0

1

1

0

1

0

ESS4 – try-catch

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

try {} catch() {}

try {

 inputFileName=args[0];

}

catch (IOException e) {

 System.err.println(e);

 System.exit(1);

}

1

1

0

1

1

1

0

ITERATION Statement

EIS1 – for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (initialization; condition; increment)

statement;

NOTE: “for” statement counts as one, no

matter how many optional expressions it

contains, i.e.

for (i = 0, j = 0; I < 5, j < 10; i++, ,j++)

for (i = 0; i < 10; i++)

 System.out.print (i);

1

1

EIS2 – empty statements (could be used for time delays)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (i = 0; i < SOME_VALUE; i++) ;

for (i = 0; i < 10; i++) ;

2

Center for Systems and Software Engineering 2013

9

EIS3 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while (<boolean expression>)

<statement>;

while (i < 10)

{

 System.out.print (i);

 i++;

}

1

0

1

1

0

EIS4 – do-while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

do

{

 <statements>;

} while (<boolean expression>);

do

{

 ch = getCharacter();

} while (ch != ‘\n’);

1

0

1

1

EIS5 – for-each

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for (String name: moreNames)

 System.out.println(name.charAt(0));

for (String n: Names)

System.out.println(ncharAt(0));

1

1

JUMP Statement

EJS1 – return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return expression If (i=0) return;

2

EJS2 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break;

if (i > 10) break;

2

EJS3 – exit function

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

void exit (int return_code);

if (x < 0) exit (1);

2

Center for Systems and Software Engineering 2013

10

EJS4 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue;

while (!done)

{

 ch = getchar();

 if (char == ‘\n’)

 {

 done = true;

 continue;

 }

}

1

0

1

1

0

1

1

0

0

EXPRESSION Statement

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> (<parameters>);

read_file (name); 1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>;

x = y;

char name[6] = “file1”;

a = 1; b = 2; c = 3;

1

1

3

EES3 – empty statement (is counted as it is considered to be a placeholder for something to call

attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

one or more “;” in succession ;

1 per each

BLOCK Statement

EBS1 – block=related statements treated as a unit

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

/* start of block */

{

 <definitions>

 <statement>

}

/* end of block */

/* start of block */

{

 i = 0;

 System.out.print (“%d”, i);

}

/* end of block */

0

0

1

1

1

0

Center for Systems and Software Engineering 2013

11

DECLARATION OR DATA LINES

DDL1 – function prototype, variable declaration

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<type> <name>

(< parameter_list>);

<type> <name>;

Class<T>

Public static void foo (int param);

double amount;

Iterator<String>

1

1

1

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

package <package_name>;

import <package_name>;

package test;

import java.io*;

1

1

Center for Systems and Software Engineering 2013

12

4. Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program. It is measured for each

function, procedure, or method according to each specific program language. This metric indicates the risk of program

complexity and also determines the number of independent test required to verify program coverage.

The cyclomatic complexity is computed by counting the number of decisions plus one for the linear path. Decisions are

determined by the number of conditional statements in a function. A function without any decisions would have a

cyclomatic complexity of one. Each decision such as an if condition or a for loop adds one to the cyclomatic complexity.

The cyclomatic complexity metric v(G) was defined by Thomas McCabe. Several variations are commonly used but are

not included in the UCC. The modified cyclomatic complexity counts select blocks as a single decision rather than

counting each case. The strict or extended cyclomatic complexity includes boolean operators within conditional

statements as additional decisions.

Cyclomatic Complexity Risk Evaluation

1-10 A simple program, without much risk

11-20 More complex, moderate risk

21-50 Complex, high risk program

> 50 Untestable program, very high risk

For Java, the following table lists the conditional keywords used to compute cyclomatic complexity.

Statement CC Count Rationale

if +1 if adds a decision

else if +1 else if adds a decision

else 0 Decision is at the if statement

switch case +1 per case Each case adds a decision – not the switch

switch default 0 Decision is at the case statements

for +1 for adds a decision at loop start

while +1 while adds a decision at loop start or at end of do loop

do 0 Decision is at while statement – no decision at unconditional loop

try 0 Decision is at catch statement

catch +1 catch adds a decision

ternary ? : +1 Ternary ? adds a decision – : is similar to default or else

