O,

I, Ir I I Java CodeCount™
Ll |:I

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

June , 2007

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
6/22/2007 1.0 Original Release CSSE
1/2/2013 1.1 Updated document template CSSE
1/14/2013 1.2 Added cyclomatic complexity CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.13 Jump Statements 9
3.14 Expression Statements 10
3.15 Block Statements 10
3.2 Declaration lines 11
3.3 Compiler directives 11
4.0 Cyclomatic Complexity 12

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the Java keywords that denote data declaration lines:

abstract boolean const int long
byte short char extends float
double implements class interface native
void static package private public
protected operator volatile template

Table 1 Data Declaration Types

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.

The following table lists the Java keywords that denote compiler directive lines:

‘ package import
Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

Java comment delimiters are “//” and “/*”. A whole comment line may span one line and does not contain
any compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:
= Selection statements (if, ? operator, switch)

= |teration statements (for, while, do-while)

= Empty statements (one or more “;”)

= Jump statements (return, goto, break, continue, exit function)

= Expression statements (function calls, assignment statements, operations, etc.)
= Block statements

An executable line of code may not contain the following statements:

= Compiler directives

= Data declaration (data) lines

= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering

2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “while”, “foreach” or “if” 1 Count Once “while” is an independent

statement statement.

R0O2 do {...} while (...); statement 2 Count Once Braces {...} and semicolon ;
used with this statement
are not counted.

RO3 Statements ending by a 3 Count once per statement, | Semicolons within “for”

semicolon including empty statement | statement are not
counted. Semicolons used
with RO1 and RO2 are not
counted.

RO4 Block delimiters, braces {...} 4 Count once per pair of braces | Braces used with RO1 and

{..}, except where a closing | RO2 are not counted.
brace is followed by a Function definition is
semicolon, i.e. };or an counted once since it is

opening brace comes aftera | followed by {...}.
keyword “else”.

RO5 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering | 2013

3. Examples

EXECUTABLE LINES

ESS1 —if, else if, else and nested if statements

if (<boolean expression>) if (x 1=0) 1
<statements>; System.out.print (“non-zero”); 1

if (<boolean expression>) if (x>0) 1
<statements>; System.out.print (“positive”); 1
else <statements>; else 0
System.out.print (“negative”); 1

if (<boolean expression>) if (x ==0) 1
<statements>; System.out.print (“zero”); 1
else if (<boolean expression>) else if (x > 0) 1
<statements>;. System.out.print (“positive”); 1
else { 0
. System.out.print (“negative”); 1
else <statements>; } 0
NOTE: complexity is not considered, i.e. | if ((x !=0) && (x> 0))
multiple “&&” or “||” as part of the System.out.print (x); 1

expression.

ESS2 - ? operator

Expl?Exp2:Exp3 x>0 ? System.out.print (“positive”) : 1
System.out.print (“negative”);

Center for Systems and Software Engineering | 2013

ESS3 — switch and nested switch statements

switch (<expression>) switch (number) 1
{ { 0
case <constant 1>: case 1: 0
<statements>; fool(); 1
break; break; 1
default default 0
<statements>; System.out.print (“invalid case”); 1

} } 0

ESS4 — try-catch

try {} catch() {} try {
inputFileName=args[0];
}
catch (IOException e) {
System.err.printin(e);
System.exit(1);

O R R R ORR

EIS1 - for

for (initialization; condition; increment) for (i=0; i< 10; i++) 1
statement; System.out.print (i); 1

NOTE: “for” statement counts as one, no
matter how many optional expressions it
contains, i.e.

for(i=0,j=0;1<5,j<10; i++, ,j++)

EIS2 — empty statements (could be used for time delays)

for (i = 0; i < SOME_VALUE; i++) ; for (i =0; i< 10; i++) ; 2

Center for Systems and Software Engineering | 2013

EIS3 — while

while (<boolean expression>) while (i < 10) 1
<statement>; { 0
System.out.print (i); 1
i++; 1
} 0

EIS4 — do-while
do do 1
{ { 0
<statements>; ch = getCharacter(); 1
} while (<boolean expression>); } while (ch = \n’); 1

EIS5 - for-each
for (String name: moreNames) for (String n: Names) 1
System.out.printin(name.charAt(0)); System.out.printin(ncharAt(0)); 1

EJS1 - return

return expression If (i=0) return; 2

EJS2 — break

break; if (i > 10) break; 2

EJS3 - exit function

void exit (int return_code); if (x < 0) exit (1); 2

Center for Systems and Software Engineering | 2013

EJS4 — continue

continue;

EES1 - function call

while (!done)
{
ch = getchar();
if (char == \n’)
{
done = true;
continue;

}

}

OCO0ORRPRORREROR

<function_name> (<parameters>);

read_file (name);

EES2 - assighment statement

<name> = <value>;

X=Y;
char name[6] = “file1”;
a=1,b=2;c=3;

EES3 — empty statement (is counted as it is considered to be a placeholder for something to call

attention)

“w,n

one or more -

in succession

EBS1 - block=related statements treated as a unit

1 per each

/* start of block */
{
<definitions>
<statement>

}
/* end of block */

/* start of block */
{
i=0;
System.out.print (“%d”, i);
}
/* end of block */

OrRr R, L, OO

10

Center for Systems and Software Engineering | 2013

DECLARATION OR DATA LINES

DDL1 - function prototype, variable declaration

<type> <name> Public static void foo (int param); 1
(< parameter_list>);

double amount;
<type><name>; 1
Iterator<String>
Class<T> 1

COMPILER DIRECTIVES

CDL1 - directive types

package <package name>; package test; 1
import <package_name>; import java.io*; 1

11

Center for Systems and Software Engineering

2013

4. Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program. It is measured for each
function, procedure, or method according to each specific program language. This metric indicates the risk of program
complexity and also determines the number of independent test required to verify program coverage.

The cyclomatic complexity is computed by counting the number of decisions plus one for the linear path. Decisions are
determined by the number of conditional statements in a function. A function without any decisions would have a
cyclomatic complexity of one. Each decision such as an if condition or a for loop adds one to the cyclomatic complexity.

The cyclomatic complexity metric v(G) was defined by Thomas McCabe. Several variations are commonly used but are
not included in the UCC. The modified cyclomatic complexity counts select blocks as a single decision rather than

counting each case.

statements as additional decisions.

Cyclomatic Complexity

Risk Evaluation

1-10

A simple program, without much risk

11-20 More complex, moderate risk
21-50 Complex, high risk program
>50 Untestable program, very high risk

For Java, the following table lists the conditional keywords used to compute cyclomatic complexity.

The strict or extended cyclomatic complexity includes boolean operators within conditional

Statement CC Count Rationale

if +1 if adds a decision

else if +1 else if adds a decision

else 0 Decision is at the if statement

switch case +1 per case Each case adds a decision — not the switch

switch default 0 Decision is at the case statements

for +1 for adds a decision at loop start

while +1 while adds a decision at loop start or at end of do loop
do 0 Decision is at while statement — no decision at unconditional loop
try 0 Decision is at catch statement

catch +1 catch adds a decision

ternary ?: +1 Ternary ? adds a decision —: is similar to default or else

12

