O,

113 Makefile CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

August , 2012

Center for Systems and Software Engineering | 2013

Revision Sheet

Date

Version

Revision Description

Author

6/20/2012

1.0

Original Release

CSSE

Center for Systems and Software Engineering | 2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
3.11 Expression Statements 7
3.3 Compiler directives 8

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program. There are no explicit data declaration statements in
Makefiles.

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.

The following table lists the Makefile keywords that denote compiler directive lines:

‘ include | -include ‘ sinclude ‘
Table 1 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

Makefile comment delimiter is “#”. A whole comment line may span one line and does not contain any
compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a
breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.
e An executable line of code may contain the following program control statements:

= Variable assignment statements
= Target: prerequisite statements
= labeled statements

e An executable line of code may not contain the following statements:
= Compiler directives
= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 Variable Assignment 1 Count Once Independent statement
R0O2 Variable Definition 2 Count once each line Independent statement
RO3 Target 3 Count once each line Independent statement
RO4 Clean 4 Count once each line Independent statement
RO5 Secondary Expansion 5 Count once each line Independent statement
RO6 Compiler Directive 6 Count once per directive Independent statement

Center for Systems and Software Engineering

3. Examples

EXECUTABLE LINES

EXPRESSION Statement

EES1 - variable assignment

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<name> = <value> OBIJECTS = filel.o file2.o file3.0 1
<name> ?=<value> immediate ?= deferred 1
<name> := <value> immediate := deferred 1
<name> += <value> immediate += deferred 1
EES2 — clean statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
clean: <statements> clean: 1
rm -f filel.txt file2.txt 1
EES3 — target prerequisite statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
target: <prerequisite recipe> filel.o: filel.c 1
S(CC) -g -c filel.c 1
edit: main.o kbd.o command.o \ 1
display.o insert.o 0
EES4 - secondary expansion
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
.secondexpansion: <statements> .SECONDEXPANSION: 1
AVAR =top 1
onefile: 1
S(AVAR) 1
twofile: 1
SS(AVAR) 1

Center for Systems and Software Engineering | 2013
COMPILER DIRECTIVES
CDL1 - directive types
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Include <file_name>

Include makefilel

