

Makefile CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

August , 2012

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

6/20/2012 1.0 Original Release CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Expression Statements

3.3 Compiler directives

7

7

7

8

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program. There are no explicit data declaration statements in

Makefiles.

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Makefile keywords that denote compiler directive lines:

include -include sinclude

Table 1 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Makefile comment delimiter is “#”. A whole comment line may span one line and does not contain any

compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Variable assignment statements

� Target: prerequisite statements

� Labeled statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 Variable Assignment 1 Count Once Independent statement

R02 Variable Definition 2 Count once each line Independent statement

R03 Target 3 Count once each line Independent statement

R04 Clean 4 Count once each line Independent statement

R05 Secondary Expansion 5 Count once each line Independent statement

R06 Compiler Directive 6 Count once per directive Independent statement

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

EXPRESSION Statement

EES1 – variable assignment

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>

<name> ?= <value>

<name> := <value>

<name> += <value>

OBJECTS = file1.o file2.o file3.o

immediate ?= deferred

immediate := deferred

immediate += deferred

1

1

1

1

EES2 – clean statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

clean: <statements>

clean:

 rm -f file1.txt file2.txt

1

1

EES3 – target prerequisite statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

target: <prerequisite recipe>

file1.o: file1.c

 $(CC) -g -c file1.c

edit: main.o kbd.o command.o \

 display.o insert.o

1

1

1

0

EES4 – secondary expansion

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

.secondexpansion: <statements>

.SECONDEXPANSION:

 AVAR = top

 onefile:

 $(AVAR)

 twofile:

 $$(AVAR)

1

1

1

1

1

1

Center for Systems and Software Engineering 2013

8

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Include <file_name>

Include makefile1

1

