Center for Systems and Software Engineering

Objective C CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

September ,2010

Revision Sheet

Date Version Revision Description Author

9/24/10 1.0 Original Release Group
Objective C

12/1/10 1.1 Final Release Group

Objective C

+——checklist for source statement counts

PHYSICAL AND LOGICAL SLOC COUNTING RULES

Objective C CodeCount™ Counting Standard

Page 1

Center for Systems and Software Engineering

Measurement Unit ngiigeiie Physical SLOC Li%ii?l Comments
Executable lines 1 One per line See table Qeflned
below in 2.9
Non-executable
lines
Declaration 5 One per line See table Defined
(Data) lines below in 2.4
Compiler 3 One per line See table Defined
directives below in 2.5
Comments Qeflned
in 2.8
On A Not included NI
their own lines (NI)
Embed
ded 5 NI NI
Banne 6 NI NI
rs
Empty 7 NI NI
comments
Blank lines 8 NI NI Qeflned
in 2.7
Table 1 Physical and Logical SLOC Counting Counts
LOGICAL SLOC COUNTING RULES
No. Structure Order of Logical SLOC Comments
Precedence Rules
RO1 | “for”, “while” or 1 Count once. “while” is an
“if” statement independent
Statement.
R0O2 | do {..} while (..); 2 Count once. Braces {..} and
statement semicolon , used
with this
statement are not
counted.
RO3 | Statements ending by 3 Count once per Semicolons within
a semicolon statement, “for” statement
including empty | are not counted.
statement. Semicolons used
with RO1 and RO2
are not counted.
R04 | Block delimiters, 4 Count once per Braces used with
braces {..} pair of braces RO1 and RO2 are
{..}, except not counted.
where a closing
brace is Function
followed by a definition is

Objective C CodeCount™ Counting Standard

Page 2

Center for Systems and Software Engineering

semicolon, i.e. | counted once since
}; it is followed by
or an opening {..}.

brace comes
after a keyword

“Yelse”.
R0O5 | Compiler directive 5 Count once per
directive.
Table 2 Logical SLOC Counting Rules
2———definitions
2.1 SLOC - Source Lines Of Code is a unit used to measure the size of
software program. SLOC counts the program source code based on a
certain set of rules. SLOC is a key input for estimating project effort

and is also used to calculate productivity and other measurements.

2.2 Physical SLOC - One physical SLOC is corresponding to one line
starting with the first character and ending by a carriage return or an
end-of-file marker of the same line, and which excludes the blank and
comment line.

2.3 Logical SLOC - Lines of code intended to measure “statements”, which
normally terminate by a semicolon (C/C++, Java, C#) or a carriage return
(VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

2.4 Data declaration line or data line - A line that contains
declaration of data and used by an assembler or compiler to interpret
other elements of the program.

The following table lists Objective C keywords that denote data
declaration lines:
I

Simple Data Compound and User Defined | Access Specifiers Type Qualifiers
Types Data Types
@class @private const
char struct @protected volatile
double union @public restrict
float enum
int typedef Storage Class Miscellaneous
Specifiers
long auto asm
short extern explicit
signed @selector (method name) mutable inline
unsigned @protocol (protocol name) register namespace
long long @encode (type spec static using
I0D @synchronized() _Complex

Objective C CodeCount™ Counting Standard
Page 3

http://www.google.com/url?q=http%3A%2F%2Fsoftware&sa=D&sntz=1&usg=AFQjCNFkMnoQKg7UUGrI-6Rn2HCbq2Tl2A
I

http://www.google.com/url?q=http%3A%2F%2Fsoftware&sa=D&sntz=1&usg=AFQjCNFkMnoQKg7UUGrI-6Rn2HCbq2Tl2A

Center for Systems and Software Engineering

SEL Bool
IMP @interface _Imaginary
STR @implementation void
BOOL @end omitted
id

Table 3 Data Declaration Types

NOTE: See Section 3 of this document for examples of data
declaration lines.

2.5Compiler directive - A statement that tells the compiler how to

compile a program,

A list of common objective-C directives is presented in the table below:

but not what to compile.

N

@interfac (@private @priva (@public @publi @public @selector @synchronized
te c
@finally @throw @”chars” @class @defs @dynamic @encode
cl, names
c2,...
#define #ifndef #include #import
#undef #else #line
#if #elif #pragma
fifdef #endif ferror
Table 4 Compiler Directives

NOTE: See Section 3 of this document for examples of compile directive
lines.

Executive Directives
@throw

@catch @finally @try

2.7 Preprocessor Directive- Preprocessor directives are special notations.
Some keywords of Objective-C are not reserved outside. These are

bycopy

in out inout oneway byref

Keyword for memory management in Objective-C

These are looking as keywords but infact these are methods of root class

NSObject.
alloc retain release nsautorelease
Some other keywords:
1. bool is a keyword used in objective-C but its value is YES or NO. In C
and C++ it has value either TRUE or FALSE.
2. 'super' and 'self' can be treated as keywords but self is a hidden

Objective C CodeCount™ Counting Standard
Page 4

Center for Systems and Software Engineering

parameter to each method and super gives the instructions to the compiler
that how to use self differently.

2.6 Blank line - A physical line of code, which contains any number of
white space characters (spaces, tabs, form feed, carriage return, line
feed, or their derivatives).

2.7 Comment line — A comment is defined as a string of zero or more
characters that follow language-specific comment delimiter.

Objective C comment delimiters are “//” and “/*”. A whole comment line
may span one or more lines and does not contain any compilable source
code. An embedded comment can co-exist with compilable source code on the
same physical line. Banners and empty comments are treated as types of
comments.

2.8 Executable line of code - A line that contains software instruction
executed during runtime and on which a breakpoint can be set in a
debugging tool. An instruction can be stated in a simple or compound
form.

An executable line of code may contain the following program control
statements:

-Selection statements (if, ? operator, switch)

-Iteration statements (for, while, do-while)

-Empty statements (one or more “;”)

-Jump statements (return, goto, break, continue, exit function)
-Expression statements (function calls, assignment statements, operations,
etc.)

-Block statements

NOTE: See Section 3 of this document for examples of control statements.
An executable line of code may not contain the following statements:
-Compiler directives

-Data declaration (data) lines

-Whole line comments, including empty comments and banners
-Blank lines

Examples Of LOGICAL SLOC Counting

Executable
lines
SELECTION
STATEMENTS
Statement e SLOC
ID . . 1 F f E 1
Description Genera orm Specific Example Count

Objective C CodeCount™ Counting Standard
Page 5

Center for Systems and Software Engineering

ESS1 if, else if (<boolean if (x !'= 0) 1
if, else expression>) NSLog (@“non- | 1
and <statements>; zero”) ;
nested if 2
statements if (<boolean if (x > 0) |1

expression>) NSLog (@“positive”);
<statement>; else
else <statement>; NSLog (@Ynegative”) ; 1
1
if (<boolean 1
expression>) if (x == 0) 1
<statements>; NSLog (@Y zero”) ; 0
else 1f (<boolean else 1f (x > 0) 1
expression>) NSLog (@“positive”)
<statements>;. ; 1
else 1
. NSLog (@“negative”)
else <statements>; H 1
0
if ((x !'= 0) && (x >|1
0)) 0
if (<boolean NSLog (@%“%1i”, x); 0
expression>) 0
{ if (x != 0) 1
<statements>; { 0
} NSLog (@“non-
else zero”) ;
{ }
<statements>; else
} {
NSLog (@“zero”) ;
NOTE : complexity is | }
not considered, i.e.
multiple “&&” or M| |7
as part of the
expression.
ESS2 ? operator Expl?Exp2:Exp3 x > 0 ? NSLog (@“+") 1
NSLog (8 -") ;

ESS3 switch and switch (<expression>) switch (number) 1
nested { { 0
switch case <constant case 1: 0
statements 1> case 11: 0

<statements>; fool(); 1

break; break; 1

case <constant case 2: 0

2> foo2(); 1
<statements>; break; 1

break; case 3: 0

case <constant foo3(); 1

3> break; 1
<statements>; default 0

break; NSLog (@“invali 1

default d case”); 0

Objective C CodeCount™ Counting Standard

Page 6

Center for Systems and Software Engineering

<statements>; }
}
ESS4 @try-@catch | @try @try 1
{ { 0
// code that could NSLog (@ "Calling |1
Q@throw func \n"); 1
// an NSexception MyFunc () ; 0
} } 1
@catch (NSexception- | catch (NSException e) 0
declaration) { 1
{ NSLog (@ " “Error: 0
// code that “e;
executes when)}
// exception-
declaration is thrown
// in the try block
}
ITERATION
S
STATEMENTS
ID g;zzingzon General Form Specific Example iigit
EIS1 for for (initialization; for (1 = 0; 1 < 10; |1
condition; increment) i++) 1
statement; NSLog (@%“%1i”, 1i);
1
for (i = 0; i < 10;1]0
i++) 1
{ 0
NSLog (@“%i”, 1i);
}
NOTE : “for” statement
counts as one, no matter
how many optional
expressions it contains,
i.e.
for (1 = 0, 3 = 0; i <
5, J < 10; i++, ,Jj++)
EIS2 empty for (i = 0; 1 < for (1 = 0; 1 < 10; 1|2
statements SOME VALUE; i++) ; i++)
(could be
used for
time delays)
EIS3 while while (<boolean | while (i < 10) 1
expression>) <statement>; { 0
NSLog (@“%i”, 1i); 1
i++; 1
} 0
EIS4 do-while Do Do 0
{ { 0
<statements>; ch = getchar(); 1

Objective C CodeCount™ Counting Standard

Page 7

Center for Systems and Software Engineering

} while (<boolean | } while (ch !'= *\n’); 1
expression>) ;
JUMP
STATEMENTS
(are
counted
as they
invoke
action -
pass to
the next
statement)
ID EZ?E?T;EEOH General Form Specific Example igggt
EJS1 return return expression; if (1 == 0) return; 2
EJS2 goto, label goto label; loopl: 0
X++; 1
. if (x < y) goto |2
label: loopl;
EJS3 break break; if (i > 10) break; 2
EJS4 exit void exit (int | 1f (x < 0) exit (1); 2
function return code);
EJS5 continue continue; while (!done) 1
{ 0
ch = getchar(); 1
if (char == “\n’) 1
{ 0
done = true; 1
continue; 1
} 0
} 0
EXPRESSIO
N
STATEMENTS
ID EZiEingzon General Form Specific Example igiit
EEST function [<function name> [read file namel; 1
call <parameters>]; —
EES2 assignment <name> = <value>; X =Yy; 1
statement char name [6] =11
“filel”; 3
a=1; b = 2; ¢ = 3;
EES3 empty one or more wp in | ; 1 per
statement succession each
(is counted
as it is
considered

Objective C CodeCount™ Counting Standard

Page 8

Center for Systems and Software Engineering

to be a
placeholder
for
something
to call
attention)
BLOCK
STATEMENTS
Statement e SLOC
ID Description General Form Specific Example Count
EBS1 block = /* start of block */ /* start of block */ 0
related { { 0
statements <definitions> i =0; 1
treated as <statement> NSLog (@%“%i”, 1i); 1
a unit } } 1
/* end of block */ /* end of block */ 0
declaratio
n (data)
lines
Statement s SLOC
ID Description General Form Specific Example Count
DDL1 function <type> <name> (< void foo (int | 1
prototype, parameter list>); param) ;
variable 1
declaration, <type> <name>; double amount, |1
price;
struct int index; 0
declaration struct <name> 0
{ struct S 1
<type> <name>; { 1
<type> <name>; int x; 1
} int y;
}i
0
struct 0
{ struct 1
<type> <name>; { 1
<type> <name>; int x; 2
} <name>; int vy,
typedef } S 1
typedef <type> <name>;
typedef int MY INT; 0
typedef struct <name> 0
{ typedef struct S 1
<type> <name>; { 1
- int i; 2
} <struct name>; char ch;
} <struct name>;
<type> <name> (<

Objective C CodeCount™ Counting Standard

Page 9

Center for Systems and Software Engineering

parameter list>) 0
{ void main () 0
{ 1
} NSLog (@“hello” | 1
) ;
interface @interface <name>: }
<super>{
<type> <name>;
<type> <name>; @interface
} Fraction: NSObject
{
implementation int numerator;
@implementation <name> | int denominator;
-<type> name { }
b @implementation
} Fraction
- (void) print {
NSLog (@ "hello”
) ;
}
compiler
directives
Statement . SLOC
ID . . General Form Specific Example
Description Count
CDL1 directive #define <name> <value> | #define MAX SIZE |1
types #import <library name> 100 1

#import <NSString>

Objective C CodeCount™ Counting Standard

Page 10

