
Center for Systems and Software Engineering

Objective C CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

September ,2010

Revision Sheet

Date Version Revision Description Author
9/24/10 1.0 Original Release Group

Objective C

12/1/10 1.1 Final Release Group
Objective C

1. checklist for source statement counts

PHYSICAL AND LOGICAL SLOC COUNTING RULES

Objective C CodeCount™ Counting Standard

Page 1

Center for Systems and Software Engineering

Measurement Unit
Order of
Precedence

Physical SLOC
Logical
SLOC

Comments

 Executable lines 1 One per line
See table

below
Defined
in 2.9

 Non-executable
lines

 Declaration
(Data) lines

2 One per line
See table

below
Defined
in 2.4

 Compiler
directives

3 One per line
See table

below
Defined
in 2.5

 Comments
Defined
in 2.8

 On
their own lines

4
Not included

(NI)
NI

 Embed
ded

5 NI NI

 Banne
rs

6 NI NI

 Empty
comments

7 NI NI

 Blank lines 8 NI NI
Defined
in 2.7

Table 1 Physical and Logical SLOC Counting Counts

LOGICAL SLOC COUNTING RULES

No. Structure
Order of
Precedence

Logical SLOC
Rules

Comments

R01 “for”, “while” or
“if” statement

1 Count once. “while” is an
independent
statement.

R02 do {…} while (…);
statement

2 Count once. Braces {…} and
semicolon ; used
with this
statement are not
counted.

R03 Statements ending by
a semicolon

3 Count once per
statement,
including empty
statement.

Semicolons within
“for” statement
are not counted.
Semicolons used
with R01 and R02
are not counted.

R04 Block delimiters,
braces {…}

4 Count once per
pair of braces
{..}, except
where a closing
brace is
followed by a

Braces used with
R01 and R02 are
not counted.

Function
definition is

Objective C CodeCount™ Counting Standard

Page 2

Center for Systems and Software Engineering

semicolon, i.e.
};

or an opening
brace comes
after a keyword
“else”.

counted once since
it is followed by
{…}.

R05 Compiler directive 5 Count once per
directive.

Table 2 Logical SLOC Counting Rules

2. definitions

2.1 SLOC – Source Lines Of Code is a unit used to measure the size of
software program . SLOC counts the program source code based on a
certain set of rules. SLOC is a key input for estimating project effort
and is also used to calculate productivity and other measurements.

2.2 Physical SLOC – One physical SLOC is corresponding to one line
starting with the first character and ending by a carriage return or an
end-of-file marker of the same line, and which excludes the blank and
comment line.

2.3 Logical SLOC – Lines of code intended to measure “statements”, which
normally terminate by a semicolon (C/C++, Java, C#) or a carriage return
(VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

2.4 Data declaration line or data line – A line that contains
declaration of data and used by an assembler or compiler to interpret
other elements of the program.

The following table lists Objective C keywords that denote data
declaration lines:

Simple Data

Types

Compound and User Defined

Data Types

Access Specifiers Type Qualifiers

@class @private const
char struct @protected volatile
double union @public restrict

float enum
int typedef Storage Class

Specifiers

Miscellaneous

long auto asm
short extern explicit
signed @selector(method_name) mutable inline
unsigned @protocol(protocol_name) register namespace
long long @encode(type_spec static using
IOD @synchronized() _Complex

Objective C CodeCount™ Counting Standard

Page 3

http://www.google.com/url?q=http%3A%2F%2Fsoftware&sa=D&sntz=1&usg=AFQjCNFkMnoQKg7UUGrI-6Rn2HCbq2Tl2A
I

http://www.google.com/url?q=http%3A%2F%2Fsoftware&sa=D&sntz=1&usg=AFQjCNFkMnoQKg7UUGrI-6Rn2HCbq2Tl2A

Center for Systems and Software Engineering

SEL _Bool

IMP @interface _Imaginary

STR @implementation void

BOOL @end omitted

id

Table 3 Data Declaration Types

 NOTE: See Section 3 of this document for examples of data
declaration lines.

2.5 Compiler directive - A statement that tells the compiler how to
compile a program, but not what to compile.

A list of common objective-C directives is presented in the table below:

@interfac
e

@private @priva
te

@public @publi
c

@public @selector @synchronized @synthesi
ze

@catch @finally @throw @”chars” @class
c1,
c2,...

@defs @dynamic
names

@encode @end

#define #ifndef #include #import

#undef #else #line

#if #elif #pragma

#ifdef #endif #error
Table 4 Compiler Directives

NOTE: See Section 3 of this document for examples of compile directive
lines.

Executive Directives

@throw @catch @finally @try

2.7 Preprocessor Directive- Preprocessor directives are special notations.
Some keywords of Objective-C are not reserved outside. These are

in Out inout oneway byref bycopy

Keyword for memory management in Objective-C

These are looking as keywords but infact these are methods of root class

NSObject.

alloc retain release nsautorelease
 Some other keywords:

1. bool is a keyword used in objective-C but its value is YES or NO. In C
and C++ it has value either TRUE or FALSE.
2. 'super' and 'self' can be treated as keywords but self is a hidden

Objective C CodeCount™ Counting Standard

Page 4

Center for Systems and Software Engineering

parameter to each method and super gives the instructions to the compiler
that how to use self differently.

2.6 Blank line – A physical line of code, which contains any number of
white space characters (spaces, tabs, form feed, carriage return, line
feed, or their derivatives).

2.7 Comment line – A comment is defined as a string of zero or more
characters that follow language-specific comment delimiter.

Objective C comment delimiters are “//” and “/*”. A whole comment line
may span one or more lines and does not contain any compilable source
code. An embedded comment can co-exist with compilable source code on the
same physical line. Banners and empty comments are treated as types of
comments.

2.8 Executable line of code - A line that contains software instruction
executed during runtime and on which a breakpoint can be set in a
debugging tool. An instruction can be stated in a simple or compound
form.

An executable line of code may contain the following program control
statements:
-Selection statements (if, ? operator, switch)
-Iteration statements (for, while, do-while)
-Empty statements (one or more “;”)
-Jump statements (return, goto, break, continue, exit function)
-Expression statements (function calls, assignment statements, operations,
etc.)
-Block statements

NOTE: See Section 3 of this document for examples of control statements.

An executable line of code may not contain the following statements:

-Compiler directives
-Data declaration (data) lines
-Whole line comments, including empty comments and banners
-Blank lines

Examples Of LOGICAL SLOC Counting

Executable
lines

SELECTION
STATEMENTS

ID
Statement
Description

General Form Specific Example
SLOC
Count

Objective C CodeCount™ Counting Standard

Page 5

Center for Systems and Software Engineering

ESS1 if, else
if, else
and
nested if
statements

if (<boolean
expression>)
 <statements>;

if (<boolean
expression>)
<statement>;
else <statement>;

if (<boolean
expression>)
 <statements>;
else if (<boolean
expression>)
 <statements>;.
.
.
else <statements>;

if (<boolean
expression>)
{
 <statements>;
}
else
{
 <statements>;
}

NOTE: complexity is
not considered, i.e.
multiple “&&” or “||”
as part of the
expression.

if (x != 0)
 NSLog(@“non-
zero”);

if (x > 0)
NSLog(@“positive”);
else
NSLog(@“negative”);

if (x == 0)
 NSLog(@“zero”);
else if (x > 0)
 NSLog(@“positive”)
;
else
 NSLog(@“negative”)
;

if ((x != 0) && (x >
0))
 NSLog(@“%i”, x);

if (x != 0)
{
 NSLog(@“non-
zero”);
}
else
{
 NSLog(@“zero”);
}

1
1

2
1

1
1
1
1
0
1

1
1

1
0
1
0
0
0
1
0

ESS2 ? operator Exp1?Exp2:Exp3 x > 0 ? NSLog(@“+”) :
NSLog(@“-”);

1

ESS3 switch and
nested
switch
statements

switch (<expression>)
{
 case <constant
1> :
 <statements>;
 break;
 case <constant
2> :
 <statements>;
 break;
 case <constant
3> :
 <statements>;
 break;
 default

switch (number)
{
 case 1:
 case 11:
 foo1();
 break;
 case 2:
 foo2();
 break;
 case 3:
 foo3();
 break;
 default
 NSLog(@“invali
d case”);

1
0
0
0
1
1
0
1
1
0
1
1
0
1
0

Objective C CodeCount™ Counting Standard

Page 6

Center for Systems and Software Engineering

 <statements>;
}

}

ESS4 @try-@catch @try
{
 // code that could
@throw
 // an NSexception
}
@catch (NSexception-
declaration)
{
 // code that
executes when
 // exception-
declaration is thrown
 // in the try block
}

@try
{
 NSLog(@ "Calling
func \n");
 MyFunc();
}
catch (NSException e)
{
 NSLog(@ " “Error:
“e;
)}

1
0
1
1
0
1
0
1
0

ITERATION
S

STATEMENTS

ID
Statement
Description

General Form Specific Example
SLOC
Count

EIS1 for for (initialization;
condition; increment)
statement;

NOTE: “for” statement
counts as one, no matter
how many optional
expressions it contains,
i.e.
 for (i = 0, j = 0; i <
5, j < 10; i++, ,j++)

for (i = 0; i < 10;
i++)
 NSLog(@“%i”, i);

for (i = 0; i < 10;
i++)
{
 NSLog(@“%i”, i);
}

1
1

1
0
1
0

EIS2 empty
statements
(could be
used for
time delays)

for (i = 0; i <
SOME_VALUE; i++) ;

for (i = 0; i < 10;
i++) ;

2

EIS3 while while (<boolean
expression>) <statement>;

while (i < 10)
{
 NSLog(@“%i”, i);
 i++;
}

1
0
1
1
0

EIS4 do-while Do
{
 <statements>;

Do
{
 ch = getchar();

0
0
1

Objective C CodeCount™ Counting Standard

Page 7

Center for Systems and Software Engineering

} while (<boolean
expression>);

} while (ch != ‘\n’); 1

JUMP
STATEMENTS

(are
counted
as they
invoke
action –
pass to
the next
statement)

ID
Statement
Description

General Form Specific Example
SLOC
Count

EJS1 return return expression; if (i == 0) return; 2

EJS2 goto, label goto label;
.
.
label:

loop1:
 x++;
 if (x < y) goto
loop1;

0
1
2

EJS3 break break; if (i > 10) break; 2

EJS4 exit
function

void exit (int
return_code);

if (x < 0) exit (1); 2

EJS5 continue continue; while (!done)
{
 ch = getchar();
 if (char == ‘\n’)
 {
 done = true;
 continue;
 }
}

1
0
1
1
0
1
1
0
0

EXPRESSIO
N

STATEMENTS

ID
Statement
Description

General Form Specific Example
SLOC
Count

EES1
function
call

[<function_name>
<parameters>];

[read_file name]; 1

EES2 assignment
statement

<name> = <value>; x = y;
char name[6] =
“file1”;
a = 1; b = 2; c = 3;

1
1
3

EES3 empty
statement
(is counted
as it is
considered

one or more “;” in
succession

; 1 per
each

Objective C CodeCount™ Counting Standard

Page 8

Center for Systems and Software Engineering

to be a
placeholder
for
something
to call
attention)

BLOCK
STATEMENTS

ID
Statement
Description

General Form Specific Example
SLOC
Count

EBS1 block =
related
statements
treated as
a unit

/* start of block */
{
 <definitions>
 <statement>
}
/* end of block */

/* start of block */
{
 i = 0;
 NSLog(@“%i”, i);
}
/* end of block */

0
0
1
1
1
0

declaratio
n (data)
lines

ID
Statement
Description

General Form Specific Example
SLOC
Count

DDL1 function
prototype,
variable
declaration,

struct
declaration

typedef

<type> <name> (<
parameter_list>);

<type> <name>;

struct <name>
{
 <type> <name>;
 <type> <name>;
}

struct
{
 <type> <name>;
 <type> <name>;
} <name>;

typedef <type> <name>;

typedef struct <name>
{
 <type> <name>;
 …
} <struct_name>;

<type> <name> (<

void foo (int
param);

double amount,
price;
int index;

struct S
{
 int x;
 int y;
};

struct
{
 int x;
 int y;
} S;

typedef int MY_INT;

typedef struct S
{
 int i;
 char ch;
} <struct_name>;

1

1
1

0
0
1
1
1

0
0
1
1
2

1

0
0
1
1
2

Objective C CodeCount™ Counting Standard

Page 9

Center for Systems and Software Engineering

interface

implementation

parameter_list>)
{
 …
}

@interface <name>:
<super>{
 <type> <name>;
 <type> <name>;
}

@implementation <name>
-<type> name{
 ...
};
}

void main()
{
 NSLog(@“hello”
);
}

@interface
Fraction: NSObject
{
int numerator;
int denominator;
}

@implementation
Fraction
-(void) print {
 NSLog(@ "hello”
);
}

0
0
1
1

compiler
directives

ID
Statement

Description
General Form Specific Example

SLOC

Count

CDL1 directive

types
#define <name> <value>

#import <library_name>

#define MAX_SIZE
100

#import <NSString>

1

1

Objective C CodeCount™ Counting Standard

Page 10

