O,

I,_Ir__lﬁl_l Pascal CodeCount™

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

January , 2011

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
1/5/2011 1.0 Original Release CSSE
1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 5
1.6 Blank line 5
1.7 Comment line 5
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.13 Jump Statements 9
3.14 Expression Statements 9
3.15 Block Statements 9
3.2 Declaration lines 10
3.3 Compiler directives 10

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the Pascal keywords that denote data declaration lines:

Compound and User
Defined Data Types
boolean array private const
byte type protected volatile
bytebool public
cardinal
char
comp
complex
double
extended
integer
int64
longint
real
shortint
single
smallint
string
word

Simple Data Types Access Specifiers Type Qualifiers

Table 1 Data Declaration Types

Center for Systems and Software Engineering | 2013

1.5.

1.6.

1.7.

1.8.

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Pascal keywords that denote compiler directive lines:

Sdefine Sifndef Sinclude Sl
Sundef Selse SCSDefine SM
Sif SW Smacro Ssetc
Sifdef Sendif Serror

Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Pascal comment delimiters are “(*..*¥)”, “{..}", and “//”. A whole comment line may span one line and does

not contain any compilable source code. An embedded comment can co-exist with compilable source code

on the same physical line. Banners and empty comments are treated as types of comments.

Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoi

nt can be set in a debugging tool. An instruction can be stated in a simple or compound form.

e An executable line of code may contain the following program control statements:

Selection statements (if, case)

Iteration statements (for, while, repeat, with)

Empty statements (one or more “;”)

Jump statements (goto, exit function)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

e An executable line of code may not contain the following statements:

Compiler directives
Data declaration (data) lines
Whole line comments, including empty comments and banners

Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “while” or “if” statement 1 Count Once “while” is an independent
statement.
RO2 | repeat{..}until (...); statement 2 Count Once
RO3 Statements ending by a 3 Count once per statement,
semicolon including empty statement
RO4 Block delimiters, begin..end; 4 Count once per set
RO5 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering

3. Examples

EXECUTABLE LINES

ESS1 —if, else if, else and nested if statements

if (<boolean expression>) then
<statement>;

if (<boolean expression>) then
<statement>

else
<statement>;

if (<boolean expression>) then
begin
<statements>
end;

NOTE: complexity is not considered, i.e.
multiple “and” or “or” as part of the
expression.

if (x <> 0) then
writeln (‘non-zero’);

if (x > 0) then

writeln (‘positive’)
else

writeln (‘negative’);

if (x = 0) then
begin
writeln (‘The answer is:’);
writeln (‘zero’);
end;

R O R R

O R Rk O R

ESS2 — case statements

case <expression> of case Number of 1
<constant 1> : <statement>; 1..10 : writeln (‘small num’); 1
<constant 2> : <statement>; 11..100 : writeln (‘large num’); 1
else (or otherwise) <statement>; else writeln (‘HUGE num’); 1

end; end; 0

ESS3 - try-except/finally

try try 1
<statements>; z := doDiv (X,Y); 1

except or finally except 1
<handlers>; On EDivException do z :=0; 1

end; end; 0

Center for Systems and Software Engineering | 2013

EIS1 - for-do

for <control> := <initial> to <final> do fori:=0to10do 1
<statement>; writeln (‘at /, i); 1
fori:=0to 10do 1

begin 0

DoSomething; 1

writeln (‘at *, i); 1

end; 0

EIS2 — while-do

while (<boolean expression>) do while (i < 10) do 1
<statement>; writeln (i); 1

EIS3 - repeat-until

repeat repeat 0
<statement>; writeln (i); 1
<statement> i=i+1l 1

until (<boolean expression>); until (i > 10); 1

EIS4 — with-do

with (<identifier>) do with Info do 1
begin begin 0
<statement>; Age :=18; 1
end; Zip :=90210; 1
end; 0

Center for Systems and Software Engineering | 2013

EJS1 - goto, label

goto label, loopl: 0
. X:=x+1; 1
label: if (x <y) then goto loop1; 2

EJS2 - exit function

void exit (int return_code); if (x < 0) then exit (1); 2

EES1 - function call

<function_name> (<parameters>); readfile (‘filename’); 1

EES2 - assighment statement

[N

<name> = <value>; X:=Y;
a:=1;b:=2;c:=3;

w

EES3 — empty statement (is counted as it is considered to be a placeholder for something to call
attention)

u,n

one or more “;” in succession 1 per each

EBS1 - block=related statements treated as a unit

begin begin 1
<statements>; i:=0; 1
end; writeln (i); 1
end; 0

Center for Systems and Software Engineering | 2013

DECLARATION OR DATA LINES

DDL1 - function prototype, variable declaration, record declaration

function <function_name> function readfile (name : string); 1

(<parameters>);

<name> : <type>; amount : real; 1

<type> = record point = record 1
<statements>; X, Y,z :real; 1

end; end; 0

COMPILER DIRECTIVES

CDL1 - directive types

{S<directive>} {Sifdef} 1

10

