

Pascal CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

January , 2011

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

1/5/2011 1.0 Original Release CSSE

1/2/2013 1.1 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

5

5

5

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.1.5 Block Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

8

9

9

9

10

10

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the Pascal keywords that denote data declaration lines:

Simple Data Types
Compound and User

Defined Data Types
Access Specifiers Type Qualifiers

boolean array private const

byte type protected volatile

bytebool public

cardinal

char

comp

complex

double

extended

integer

int64

longint

real

shortint

single

smallint

string

word

Table 1 Data Declaration Types

Center for Systems and Software Engineering 2013

5

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Pascal keywords that denote compiler directive lines:

$define $ifndef $include $I

$undef $else $CSDefine $M

$if $W $macro $setc

$ifdef $endif $error

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Pascal comment delimiters are “(*..*)”, “{..}”, and “//”. A whole comment line may span one line and does

not contain any compilable source code. An embedded comment can co-exist with compilable source code

on the same physical line. Banners and empty comments are treated as types of comments.

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, case)

� Iteration statements (for, while, repeat, with)

� Empty statements (one or more “;”)

� Jump statements (goto, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “while” or “if” statement 1 Count Once “while” is an independent

statement.

R02 repeat {…} until (…); statement 2 Count Once

R03 Statements ending by a

semicolon

3 Count once per statement,

including empty statement

R04 Block delimiters, begin..end; 4 Count once per set

R05 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, else if, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if (<boolean expression>) then

 <statement>;

if (<boolean expression>) then

 <statement>

else

 <statement>;

if (<boolean expression>) then

 begin

 <statements>

 end;

NOTE: complexity is not considered, i.e.

multiple “and” or “or” as part of the

expression.

if (x <> 0) then

 writeln (‘non-zero’);

if (x > 0) then

 writeln (‘positive’)

else

 writeln (‘negative’);

if (x = 0) then

 begin

 writeln (‘The answer is:’);

 writeln (‘zero’);

 end;

1

1

1

1

0

1

1

0

1

1

0

ESS2 – case statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

case <expression> of

 <constant 1> : <statement>;

 <constant 2> : <statement>;

 else (or otherwise) <statement>;

end;

case Number of

 1..10 : writeln (‘small num’);

 11..100 : writeln (‘large num’);

 else writeln (‘HUGE num’);

end;

1

1

1

1

0

ESS3 – try-except/finally

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

try

 <statements>;

except or finally

 <handlers>;

end;

try

 z := doDiv (X,Y);

except

 On EDivException do z := 0;

end;

1

1

1

1

0

Center for Systems and Software Engineering 2013

8

ITERATION Statement

EIS1 – for-do

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for <control> := <initial> to <final> do

 <statement>;

for i := 0 to 10 do

 writeln (‘at ‘, i);

for i := 0 to 10 do

 begin

 DoSomething;

 writeln (‘at ‘, i);

 end;

1

1

1

0

1

1

0

EIS2 – while-do

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while (<boolean expression>) do

 <statement>;

while (i < 10) do

 writeln (i);

1

1

EIS3 – repeat-until

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

repeat

 <statement>;

 <statement>

until (<boolean expression>);

repeat

 writeln (i);

 i := i + 1

until (i > 10);

0

1

1

1

EIS4 – with-do

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

with (<identifier>) do

 begin

 <statement>;

 end;

with Info do

 begin

 Age := 18;

 Zip := 90210;

 end;

1

0

1

1

0

Center for Systems and Software Engineering 2013

9

JUMP Statement

EJS1 – goto, label

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

goto label;

.

label:

loop1:

 x := x + 1;

 if (x < y) then goto loop1;

0

1

2

EJS2 – exit function

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

void exit (int return_code);

if (x < 0) then exit (1);

2

EXPRESSION Statement

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> (<parameters>); readfile (‘filename’);

1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>;

x := y;

a := 1; b := 2; c := 3;

1

3

EES3 – empty statement (is counted as it is considered to be a placeholder for something to call

attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

one or more “;” in succession ;

1 per each

BLOCK Statement

EBS1 – block=related statements treated as a unit

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

begin

 <statements>;

end;

begin

 i := 0;

 writeln (i);

end;

1

1

1

0

Center for Systems and Software Engineering 2013

10

DECLARATION OR DATA LINES

DDL1 – function prototype, variable declaration, record declaration

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

function <function_name>

(<parameters>);

<name> : <type>;

<type> = record

 <statements>;

end;

function readfile (name : string);

amount : real;

point = record

 x, y, z : real;

end;

1

1

1

1

0

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

{$<directive>}

{$ifdef}

1

