O,

“ 1111 Python CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

October , 2007

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
10/28/2007 1.0 Consolidated Draft CSSE
4/2/2008 1.1 Update section 3.0 (selection, iteration statements) CSSE
4/14/2008 1.2 Update section 3.0 (jump, expression statements) CSSE
1/2/2013 2.0 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.13 Jump Statements 8
3.14 Expression Statements 9
3.2 Declaration lines 11

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program.

The following table lists the Python keywords that denote data declaration lines:

| class |
Table 1 Data Declaration Types

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile.
Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).
Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.
There are two styles of comments in Python

e #single line comment

e """ thisis a multiline comment which spawns many lines
A whole comment line may span one line and does not contain any compilable source code. An embedded

comment can co-exist with compilable source code on the same physical line. Banners and empty

comments are treated as types of comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:

Selection statements (if, ? operator)

Iteration statements (for, while, do-until, foreach)

Empty statements (pass)

Jump statements (return, goto, last, next, exit function)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

An executable line of code may not contain the following statements:

Whole line comments, including empty comments and banners

Blank lines

Center for Systems and Software Engineering

2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One per line Defined in 1.8
Non-executable Lines
Declaration (Data) Lines 2 One per line Defined in 1.4
Compiler Directive 3 One per line Defined in 1.5
Comments Defined in 1.7
One their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

RO1 | “for”, “while” or “if” statement 1 Count Once “while” is an independent
statement.

R0O2 do {...} while (...); statement 2 Count Once Braces {...} and semicolon ;
used with this statement
are not counted.

RO3 Statements ending by a 3 Count once per statement, | Semicolons within “for”

semicolon including empty statement | statement are not
counted.Semicolons used
with RO1 and R0O2 are not
counted.

RO4 Block delimiters, braces {...} 4 Count once per pair of braces | Braces used with R01 and

{..}, except where a closing | R02 are not
brace is followed by a counted.Function
semicolon, i.e. };or an definition is counted once
opening brace comes after a | since it is followed by {...}.
keyword “else”.
RO5 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering | 2013
3. Examples
EXECUTABLE LINES
SELECTION Statement
ESS1 —if, else if, else and nested if statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
if <expression>: if password == "pass": 1
<statements> print "Access Granted" 1
if <expression>: if password == "name": 1
<statement> print "Access Granted" 1
else: else: 0
<statement> print "Access Denied" 1
if <expression>: if num > 0: 1
<statements> print 'positive’ 1
elif <expression>: elif num < 0: 1
<statements> print 'negative' 1
else: else: 0
<statements> print 'zero' 1
if <expression>: if x<0: 1
<statements> x=0 1
<statements> print 'Negative' 1
else: else: 0
<statements> print 'Positive' 1
NOTE: complexity is not considered
ESS2 — try-except-finally
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
try: try: 1
<do something> try: 1/0 1
except Exception: except: 1
<handle the error> print "exception" 1
finally: except ZeroError: 1
<cleanup> print "divide-by-0" 1

Center for Systems and Software Engineering | 2013

EIS1 - for

for <expression>: forxin a: 1
<statement> print x, 1
NOTE: “for” statement counts as one, no | for xin a: 1
matter how many optional expressions it | { 0
contains print ‘x’ 1
} 0

EIS2 — while

while <boolean expression>: while x <= 100:
<statement> print x
x+=1

EJS1 - return

return expression def knights():
title = 'Sir'
action = (lambda x: title + ' ' + x)
return action

act = knights()

print act('robin’)

Y e = Y

EJS2 - break

for xinrange(1, 11):
if x==5:
break break
print x,
print "\nBroke out of loop at x =", x

Y

Center for Systems and Software Engineering | 2013
EJS3 — exit function
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
os.exit(int return_code) def outahere(): 1
import os 1
print 'Bye os world' 1
0s._exit(99) 1
print 'Never reached' 1
if _name__=='_main__": outahere() 2
EJS4 — continue
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
forxinrange(1,11): 1
if x=="5: 1
. continue 1
continue .
print x, 1
print "\nUsed continue to skip printingthe | 1
value 5"
EXPRESSION Statement
EES1 - function call
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<function_name> (<parameters>); read_file (name); 1
EES2 - assighment statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
assignment_stmt = (target_list "=")+ X=y 1
expression_list name = “filel” 1
a,b,c=123 1

target_list = target ("," target)* [","]

target = identifier | "(" target_list")" | "["
target_list "]" | attributeref | subscription
| slicing

Center for Systems and Software Engineering | 2013
EES3 — empty statement (is counted as it is considered to be a placeholder for something to call
attention)
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
Pass if month ==1: 1
pass 1
else: 1
print "late" 1
EES4 — Explicit line joining
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
<expression> \ bar = 'thisis '\ 1
<expression>\ 'one long string ' \
<expression> "that is split '\
'across multiple lines'
print bar 1

EES5 - Implicit line joining (Expressions in parentheses, square brackets, or curly braces can be split
over more than one physical line without using backslashes)

GENERAL EXAMPLE

SPECIFIC EXAMPLE

SLOC COUNT

(<expression>,
;.expression>)
[<expression>,
;.expression>]
{<expression>,

<expression>}

day = [‘mon’, ‘tue’,
‘wed’, ‘thur’, “fri’,
‘sat’, ‘sun’]

def node(name):

return {
'Parent' : None,
'LeftChild' : None,
'RightChild' : None,
'LeftRoutingTable' : list(),
'Name' : name,
‘Level': 0

10

Center for Systems and Software Engineering

2013

DECLARATION OR DATA LINES

DDL1 —class

GENERAL EXAMPLE

SPECIFIC EXAMPLE

SLOC COUNT

class ClassName:
<statement-1>

<statement-N>

i=12345

class MyClass:

def f(self):
return 'hello’

)

11

