

Python CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

October , 2007

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

10/28/2007 1.0 Consolidated Draft CSSE

4/2/2008 1.1 Update section 3.0 (selection, iteration statements) CSSE

4/14/2008 1.2 Update section 3.0 (jump, expression statements) CSSE

1/2/2013 2.0 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.2 Declaration lines

7

7

7

8

8

9

11

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the Python keywords that denote data declaration lines:

class

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

There are two styles of comments in Python

• # single line comment

• " " " this is a multiline comment which spawns many lines

A whole comment line may span one line and does not contain any compilable source code. An embedded

comment can co-exist with compilable source code on the same physical line. Banners and empty

comments are treated as types of comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, ? operator)

� Iteration statements (for, while, do-until, foreach)

� Empty statements (pass)

� Jump statements (return, goto, last, next, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One per line Defined in 1.8

Non-executable Lines

Declaration (Data) Lines 2 One per line Defined in 1.4

Compiler Directive 3 One per line Defined in 1.5

Comments Defined in 1.7

 One their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “while” or “if” statement 1 Count Once “while” is an independent

statement.

R02 do {…} while (…); statement 2 Count Once Braces {…} and semicolon ;

used with this statement

are not counted.

R03 Statements ending by a

semicolon

3 Count once per statement,

including empty statement

Semicolons within “for”

statement are not

counted.Semicolons used

with R01 and R02 are not

counted.

R04 Block delimiters, braces {…} 4 Count once per pair of braces

{..}, except where a closing

brace is followed by a

semicolon, i.e. };or an

opening brace comes after a

keyword “else”.

Braces used with R01 and

R02 are not

counted.Function

definition is counted once

since it is followed by {…}.

R05 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, else if, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if <expression>:

<statements>

if <expression>:

<statement>

else:

<statement>

if <expression>:

<statements>

elif <expression>:

 <statements>

else:

 <statements>

if <expression>:

<statements>

<statements>

else:

<statements>

NOTE: complexity is not considered

if password == "pass":

 print "Access Granted"

if password == "name":

 print "Access Granted"

else:

 print "Access Denied"

if num > 0:

 print 'positive'

elif num < 0:

 print 'negative'

else:

 print 'zero'

if x < 0:

 x = 0

 print 'Negative'

else:

 print 'Positive'

1

1

1

1

0

1

1

1

1

1

0

1

1

1

1

0

1

ESS2 – try-except-finally

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

try:

<do something>

except Exception:

 <handle the error>

finally:

 <cleanup>

try:

 try: 1/0

 except:

 print "exception"

except ZeroError:

 print "divide-by-0"

1

1

1

1

1

1

Center for Systems and Software Engineering 2013

8

ITERATION Statement

EIS1 – for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for <expression>:

 <statement>

NOTE: “for” statement counts as one, no

matter how many optional expressions it

contains

for x in a:

 print x,

for x in a:

{

 print ‘x’

}

1

1

1

0

1

0

EIS2 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while <boolean expression>:

 <statement>

while x <= 100:

 print x

 x += 1

1

1

1

JUMP Statement

EJS1 – return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return expression def knights():

 title = 'Sir'

 action = (lambda x: title + ' ' + x)

 return action

act = knights()

print act('robin')

1

1

1

1

1

1

EJS2 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break

for x in range(1, 11):

 if x == 5:

 break

 print x,

print "\nBroke out of loop at x =", x

1

1

1

1

1

Center for Systems and Software Engineering 2013

9

EJS3 – exit function

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

os.exit(int return_code) def outahere():

 import os

 print 'Bye os world'

 os._exit(99)

 print 'Never reached'

if __name__ == '__main__': outahere()

1

1

1

1

1

2

EJS4 – continue

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

continue

for x in range(1, 11):

 if x == 5:

 continue

 print x,

print "\nUsed continue to skip printing the

value 5"

1

1

1

1

1

EXPRESSION Statement

EES1 – function call

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> (<parameters>); read_file (name);

1

EES2 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

assignment_stmt = (target_list "=")+

expression_list

target_list = target ("," target)* [","]

target = identifier | "(" target_list ")" | "["

target_list "]" | attributeref | subscription

| slicing

x = y

name = “file1”

a, b, c = 1,2,3

1

1

1

Center for Systems and Software Engineering 2013

10

EES3 – empty statement (is counted as it is considered to be a placeholder for something to call

attention)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

Pass

if month == 1:

 pass

else:

 print "late"

1

1

1

1

EES4 – Explicit line joining

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<expression> \

<expression> \

<expression>

bar = 'this is ' \

 'one long string ' \

 'that is split ' \

 'across multiple lines'

print bar

1

1

EES5 – Implicit line joining (Expressions in parentheses, square brackets, or curly braces can be split

over more than one physical line without using backslashes)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

(<expression>,

…

<expression>)

[<expression>,

…

<expression>]

{<expression>,

…

<expression>}

day = [‘mon’, ‘tue’,

 ‘wed’, ‘thur’, ‘fri’,

‘sat’, ‘sun’]

def node(name):

return {

 'Parent' : None,

 'LeftChild' : None,

 'RightChild' : None,

 'LeftRoutingTable' : list(),

 'Name' : name,

 'Level' : 0

}

1

1

1

0

Center for Systems and Software Engineering 2013

11

DECLARATION OR DATA LINES

DDL1 – class

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

class ClassName:

 <statement-1>

 .

 .

 .

 <statement-N>

class MyClass:

 i = 12345

 def f(self):

 return 'hello'

0

1

1

1

