O,

“ 1111 Ruby CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2011

Center for Systems and Software Engineering | 2013

Revision Sheet

Date Version Revision Description Author
3/1/2011 1.0 Original Release CSSE
12/1/2011 1.1 Updated CSSE
1/2/2013 1.2 Updated document template CSSE

Center for Systems and Software Engineering

2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 4
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
311 Selection Statements 7
3.1.2 Iteration Statements 8
3.13 Jump Statements 9
3.14 Expression Statements 11
3.15 Block Statements 12
3.1.6 Class and Module Statements 13
3.1.7 Operators and Pseudo-Variables 14

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is
also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment
line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or
compiler to interpret other elements of the program. Ruby does not contain any data declarations.
Compiler Directives — A statement that tells the compiler how to compile a program, but not what to
compile. Ruby does not contain any compiler directivess

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,
form feed, carriage return, line feed, or their derivatives).

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.

Ruby comment delimiter is “#”. A whole comment line may span one line and does not contain any
compliable source code. An embedded comment can co-exist with compliable source code on the same
physical line. Banners and empty comments are treated as types of comments.

NOTE: The ‘# character is also used for other purposes within Ruby, apart from delimiting comments.

Center for Systems and Software Engineering | 2013

1.8. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

An executable line of code may contain the following program control statements:

Selection statements (if, ? operator)

Iteration statements (for, while, do)

Empty statements (one or more “;”)

Jump statements (return, goto, last, next, exit function)

Expression statements (function calls, assignment statements, operations, etc.)

Block statements

An executable line of code may not contain the following statements:

Whole line comments, including empty comments and banners

Blank lines

Center for Systems and Software Engineering

2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.8
Non-executable Lines
Declaration (Data) lines 2 One per line Defined in 1.4
Compiler Directives 3 One per line Defined in 1.5
Comments Defined in 1.7
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.6

LoGICcAL SLOC COUNTING RULES

{..}, except where a closing
brace is followed by a
semicolon, i.e. };or an

opening brace comes after a
keyword “else”.

RO1 | “for”, “while” or “if” statement 1 Count Once “while” is an independent
statement.

R0O2 do {...} unitl (...); statement 2 Count Once Braces {...} and semicolon ;
used with this statement
are not counted.

RO3 Block delimiters, braces {...} 3 Count once per pair of braces | Braces used with RO1 and

R0O2 are not counted.
Function definition is
counted once since it is
followed by {...}.

Center for Systems and Software Engineering

2013

3. Examples

EXECUTABLE LINES

ESS1 - if, elsif, else and nested if statements

if <Boolean expression> [then]
<statements>
end

if <Boolean expression> [then]
<statements>

else
<statements>

end

if <Boolean expression> [then]
<statements>

elsif <Boolean expression> [then]
<statements>

else
<statements>

end

<statement> if <Boolean expr>

<statement LHS> if <Boolean expr>
<statement RHS1>

else
<statement RHS2>

end

multiple “&&"” or “| |” as part of the
expression.

NOTE: complexity is not considered, i.e.

if x I= 0 then
print “non-zero”
end

ifx>0

print “positive”
else

print “negative”
end

if x ==

print “zero”
elsif x>0

print “positive”
else

print “negative”
end

i=1ifx>10

toss = if rand(2) == 1 then
"heads"

else
"tails"

end

ORrR O R R R R OrRr O R K [@J

N

O R O R K

Center for Systems and Software Engineering | 2013

ESS2 — case-when-else-end

case <expression>
when <constant 1>
<statements>
when <constant 2>
<statements>
else
<statements>
end

case Snum
when 0..10
print “small num”
when 11..100
print “large num”
else
print “HUGE num”
end

OR OR R R R

ESS3 — unless statements

unless <expression> [then]
<statements>

else
<statements>

end

<statements> unless <Boolean expr>

EIS1 - for

unless Sbig
print “small”
else
print “big”
end

print "Non-negative" unless x > 0

OrRr OR R ‘

N

while <Boolean expr> [do]
<statements>
end

<statement> while <Boolean expr>
begin

<statements>
end while <Boolean expr>

while $i < Snum
puts("Inside the loop i = #Si");
Si+=1;

end

puts $1 += 2 while $i< 10

begin
puts("Inside the loop i = #Si");
Si+=1;

end while $i < Snum

for <control> in <expr> [do] foriin[1,2,3]do 1

<statements> print i*2 1

end end 0
EIS2 — while

N OR R R, ‘

Y)

Center for Systems and Software Engineering | 2013

EIS3 — until

until <Boolean expr> [do] until Si > Snum 1
<statements> puts("Inside the loop i = #Si"); 1
end Si+=1; 1
end 0

<statement> until <Boolean expr> puts $1 += 2 until Si> 10 2
begin begin 1
<statements> puts("Inside the loop i = #5i"); 1
end until <Boolean expr> Si +=1; 1
end until Si > Shum 1

EIS4 — each iterator

<collection>.each do <|variable|> a.each do |i| 1
<statements> puts i 1
end end 0

EIS5 — collect iterator

<collection> = <collection>.collect b = a.collect 1

<collection> = ¢ = a.collect{|x| 10*x} 2
<collection>.collect{|variable| expr}

EJS1 — throw

throw <:labelname> throw :greeting 1
throw <:labelname> <condition> throw :greeting if TIME == 2
EJS2 — catch

catch <:labelname> do catch :greeting do 1
<statements> puts(“Good morning!”); 1
end end 0

Center for Systems and Software Engineering | 2013

EJS3 —return

return <expr>

<condition> return

def test2
i=100; j=200; k=300
returni, j, k;

end

if x<0return

O R Wk

EJS4 — break

break if i >2 then 1
break 1
end 0

EJS5 — next

redo statement

redo

next ifi <2 then 1
next 1
end 0

EJS6 —redo

ifi <2 then
redo
end

EJS7 —retry

begin
<statements>

rescue
<statements>
retry

end

retry <condition>

begin

nil; # exception raised
rescue

nil; # handles error

retry # restart from begin block
end

foriin1..5

retry if i>2

puts "Value of local variable is #{i}"
end

O R R R R R

O R, N BF

10

Center for Systems and Software Engineering | 2013

EES1 - assignment statement

<name> = <value> X=3;X=Y; 2
<namel> = <name2> Snum =10 1
@cust_name = name 1
@@no_of_customers =4 1
P1=3.14159 1

EES2 — empty statement (is counted as it is considered to be a placeholder for something)

one or more “;”, but not following another | while i <10 do 1
statement puts(“Hello!”); 1
; 1

end 0

EES3 - function calls (general)

<function_name> <parameters> puts(“Hello!”) 1

EES4 — function calls (special)

raise begin
puts 'l am before the raise.’
raise 'An error has occurred.'
puts 'l am after the raise.'
rescue
puts 'l am rescued.'
end

OR R R R R R

[N

require require "Week"

include class Decade
include Week
no_of yrs=10
def no_of_months
puts Week::FIRST_DAY
number = 10*12
puts number
end
end

QO R RRRRRR

11

Center for Systems and Software Engineering | 2013

EBS1 - yield

yield [varl, var2, ...] def testl 1
yield 1
end 0
def test2 1
yield 5 1
end 0

EBS2 — do-end

<method_invocation> do testl do 1
<statements> puts "You are in the block" 1
end end 0

EBS3 — {} delimiters

<method_invocation> { test2 { 1
<statements> |i] puts "You are in the block #{i}" 1
} } 0

EBS4 — begin-end

BEGIN { BEGIN { 1
<statements> puts "Initializing Ruby Program" 1
} } 0
END { END { 1
<statements> puts "Terminating Ruby Program" 1
} } 0

12

Center for Systems and Software Engineering | 2013

EBS5 — begin-rescue-else-ensure-end

begin
<statements>
rescue
<statements>
else
<statements>
ensure
<statements>
end

begin

puts "I'm not raising exception"
rescue Exception =>e

puts e.message

puts e.backtrace.inspect
else

puts "Congratulations-- no errors!"
ensure

puts "Ensuring execution"
end

OR R RORRRRR

ECS1 — class

class <class_name> class Customer 1

<statements> @@no_of_customers=0 1

end end 0
ECS2 — def

undef <method_name>

undef hello

def <method_name>[var = value] def hello 1

<statements> puts "Hello Ruby!" 1

end end 0
ECS3 — undef

ECS4 - alias

alias

alias <new_method> <old_method>

alias <new_glob_var> <old_glob_var>

alias greeting hello

alias Sangle Sargument

13

Center for Systems and Software Engineering | 2013

ECS5 — super
[GENERALEXAMPLE [SPECIFICEXAMPLE [SLOCCOUNT |

super class Employee < Sample 1
def initialize(fname, Iname, position) 1
super(fname,lname) 1
@position = position 1
end 0
defto_s 1
super + ", #@position" 1
end 0
end 0

ECS6 — module

module <module_identifier>
<statements>
end

module Trig
Pl =3.141592654
def Trig.sin(x)
nil; # Code for sine of x
end
def Trig.cos(x)
nil; # Code for cosine of x
end
end

O R P OR KRR

EOP1 - defined?

defined? [parameter]

(parameter = variable, method_call, super,
yield)

defined? foo
defined? S_
defined? puts
defined? puts(bar)
defined? super
defined? yield

R R R R R R

EOP1 - nil

<variable> = nil;
(functions as a variable with a logic value
false)

nil
(functions as a placeholder)

@name = nil;

def Trig.sin(x)
nil # Code for sine of x
end

14

