

Ruby CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2011

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

3/1/2011 1.0 Original Release CSSE

12/1/2011 1.1 Updated CSSE

1/2/2013 1.2 Updated document template CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

4

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Selection Statements

3.1.2 Iteration Statements

3.1.3 Jump Statements

3.1.4 Expression Statements

3.1.5 Block Statements

3.1.6 Class and Module Statements

3.1.7 Operators and Pseudo-Variables

7

7

7

8

9

11

12

13

14

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program. Ruby does not contain any data declarations.

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile. Ruby does not contain any compiler directivess

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Ruby comment delimiter is “#”. A whole comment line may span one line and does not contain any

compliable source code. An embedded comment can co-exist with compliable source code on the same

physical line. Banners and empty comments are treated as types of comments.

NOTE: The ‘#’ character is also used for other purposes within Ruby, apart from delimiting comments.

Center for Systems and Software Engineering 2013

5

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, ? operator)

� Iteration statements (for, while, do)

� Empty statements (one or more “;”)

� Jump statements (return, goto, last, next, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One Per line Defined in 1.8

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.4

Compiler Directives 3 One per line Defined in 1.5

Comments Defined in 1.7

 On their own lines 4 Not Included (NI)

 Embedded 5 NI

 Banners 6 NI

 Empty Comments 7 NI

Blank Lines 8 NI Defined in 1.6

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 “for”, “while” or “if” statement 1 Count Once “while” is an independent

statement.

R02 do {…} unitl (…); statement 2 Count Once Braces {…} and semicolon ;

used with this statement

are not counted.

R03 Block delimiters, braces {…} 3 Count once per pair of braces

{..}, except where a closing

brace is followed by a

semicolon, i.e. };or an

opening brace comes after a

keyword “else”.

Braces used with R01 and

R02 are not counted.

Function definition is

counted once since it is

followed by {…}.

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

SELECTION Statement

ESS1 – if, elsif, else and nested if statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if <Boolean expression> [then]

 <statements>

end

if <Boolean expression> [then]

 <statements>

else

 <statements>

end

if <Boolean expression> [then]

 <statements>

elsif <Boolean expression> [then]

 <statements>

else

 <statements>

end

<statement> if <Boolean expr>

<statement LHS> if <Boolean expr>

 <statement RHS1>

else

 <statement RHS2>

end

NOTE: complexity is not considered, i.e.

multiple “&&” or “||” as part of the

expression.

if x != 0 then

 print “non-zero”

end

if x > 0

 print “positive”

else

 print “negative”

end

if x == 0

 print “zero”

elsif x > 0

 print “positive”

else

 print “negative”

end

i = 1 if x > 10

toss = if rand(2) == 1 then

 "heads"

else

 "tails"

end

1

1

0

1

1

0

1

0

1

1

1

1

0

1

0

2

1

1

0

1

0

Center for Systems and Software Engineering 2013

8

ESS2 – case-when-else-end

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

case <expression>

 when <constant 1>

 <statements>

 when <constant 2>

 <statements>

 else

 <statements>

end

case $num

 when 0..10

 print “small num”

 when 11..100

 print “large num”

 else

 print “HUGE num”

end

1

1

1

1

1

0

1

0

ESS3 – unless statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

unless <expression> [then]

 <statements>

else

 <statements>

end

<statements> unless <Boolean expr>

unless $big

 print “small”

else

 print “big”

end

print "Non-negative" unless x > 0

1

1

0

1

0

2

ITERATION Statement

EIS1 – for

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

for <control> in <expr> [do]

 <statements>

end

for i in [1, 2, 3] do

 print i*2

end

1

1

0

EIS2 – while

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while <Boolean expr> [do]

 <statements>

end

<statement> while <Boolean expr>

begin

 <statements>

end while <Boolean expr>

while $i < $num

 puts("Inside the loop i = #$i");

 $i +=1;

end

puts $1 += 2 while $i < 10

begin

 puts("Inside the loop i = #$i");

 $i +=1;

end while $i < $num

1

1

1

0

2

1

1

1

1

Center for Systems and Software Engineering 2013

9

EIS3 – until

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

until <Boolean expr> [do]

 <statements>

end

<statement> until <Boolean expr>

begin

 <statements>

end until <Boolean expr>

until $i > $num

 puts("Inside the loop i = #$i");

 $i +=1;

end

puts $1 += 2 until $i > 10

begin

 puts("Inside the loop i = #$i");

 $i +=1;

end until $i > $num

1

1

1

0

2

1

1

1

1

EIS4 – each iterator

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<collection>.each do <|variable|>

 <statements>

end

a.each do |i|

 puts i

end

1

1

0

EIS5 – collect iterator

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<collection> = <collection>.collect

<collection> =

<collection>.collect{|variable| expr}

b = a.collect

c = a.collect{|x| 10*x}

1

2

JUMP Statement

EJS1 – throw

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

throw <:labelname>

throw <:labelname> <condition>

throw :greeting

throw :greeting if TIME == 0

1

2

EJS2 – catch

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

catch <:labelname> do

 <statements>

end

catch :greeting do

 puts(“Good morning!”);

end

1

1

0

Center for Systems and Software Engineering 2013

10

EJS3 – return

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

return <expr>

<condition> return

def test2

 i = 100; j = 200; k = 300

 return i, j, k;

end

if x < 0 return

1

3

1

0

2

EJS4 – break

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

break

if i > 2 then

 break

end

1

1

0

EJS5 – next

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

next

if i < 2 then

 next

end

1

1

0

EJS6 – redo

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

redo statement

redo

if i < 2 then

 redo

end

EJS7 – retry

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

begin

 <statements>

rescue

 <statements>

 retry

end

retry <condition>

begin

 nil; # exception raised

rescue

 nil; # handles error

 retry # restart from begin block

end

for i in 1..5

 retry if i > 2

 puts "Value of local variable is #{i}"

end

1

1

1

1

1

0

1

2

1

0

Center for Systems and Software Engineering 2013

11

EXPRESSION Statement

EES1 – assignment statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<name> = <value>

<name1> = <name2>

x = 3; x = y;

$num = 10

@cust_name = name

@@no_of_customers = 4

PI = 3.14159

2

1

1

1

1

EES2 – empty statement (is counted as it is considered to be a placeholder for something)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

one or more “;”, but not following another

statement

while i < 10 do

 puts(“Hello!”);

 ;

end

1

1

1

0

EES3 – function calls (general)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<function_name> <parameters>

puts(“Hello!”)

1

EES4 – function calls (special)

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

raise

require

include

begin

 puts 'I am before the raise.'

 raise 'An error has occurred.'

 puts 'I am after the raise.'

rescue

 puts 'I am rescued.'

end

require "Week"

class Decade

 include Week

 no_of_yrs=10

 def no_of_months

 puts Week::FIRST_DAY

 number = 10*12

 puts number

 end

end

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

0

Center for Systems and Software Engineering 2013

12

BLOCK Statements

EBS1 – yield

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

yield [var1, var2, …]

def test1

 yield

end

def test2

 yield 5

end

1

1

0

1

1

0

EBS2 – do-end

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<method_invocation> do

 <statements>

end

test1 do

 puts "You are in the block"

end

1

1

0

EBS3 – {} delimiters

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<method_invocation> {

 <statements>

}

test2 {

 |i| puts "You are in the block #{i}"

}

1

1

0

EBS4 – begin-end

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

BEGIN {

 <statements>

}

END {

 <statements>

}

BEGIN {

 puts "Initializing Ruby Program"

}

END {

 puts "Terminating Ruby Program"

}

1

1

0

1

1

0

Center for Systems and Software Engineering 2013

13

EBS5 – begin-rescue-else-ensure-end

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

begin

 <statements>

rescue

 <statements>

else

 <statements>

ensure

 <statements>

end

begin

 puts "I'm not raising exception"

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

else

 puts "Congratulations-- no errors!"

ensure

 puts "Ensuring execution"

end

1

1

1

1

1

0

1

1

1

0

CLASS AND MODULE Statements

ECS1 – class

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

class <class_name>

 <statements>

end

class Customer

 @@no_of_customers = 0

end

1

1

0

ECS2 – def

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

def <method_name>[var = value]

 <statements>

end

def hello

 puts "Hello Ruby!"

end

1

1

0

ECS3 – undef

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

undef <method_name>

undef hello

1

ECS4 – alias

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

alias

alias <new_method> <old_method>

alias <new_glob_var> <old_glob_var>

alias greeting hello

alias $angle $argument

Center for Systems and Software Engineering 2013

14

ECS5 – super

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

super

class Employee < Sample

 def initialize(fname, lname, position)

 super(fname,lname)

 @position = position

 end

 def to_s

 super + ", #@position"

 end

end

1

1

1

1

0

1

1

0

0

ECS6 – module

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

module <module_identifier>

 <statements>

end

module Trig

 PI = 3.141592654

 def Trig.sin(x)

 nil; # Code for sine of x

 end

 def Trig.cos(x)

 nil; # Code for cosine of x

 end

end

1

1

1

1

0

1

1

0

OPERATORS AND PSEUDO-VARIABLES

EOP1 – defined?

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

defined? [parameter]

(parameter = variable, method_call, super,

yield)

defined? foo

defined? $_

defined? puts

defined? puts(bar)

defined? super

defined? yield

1

1

1

1

1

1

EOP1 – nil

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

<variable> = nil;

(functions as a variable with a logic value

false)

nil

(functions as a placeholder)

@name = nil;

def Trig.sin(x)

 nil # Code for sine of x

end

1

1

1

0

