

	

	

	

	

	

	

	

	

Scala	
 CodeCount™	

	

Counting	
 Standard	

	

	

	

University	
 of	
 Southern	
 California	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering	

	

	

	

December , 2015

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

2

	

Revision	
 Sheet	

	

Date Version Revision	
 Description Author

12/23/15 1.0 Original	
 Release Randy	
 Maxwell

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

3

Table	
 of	
 Contents	

	

	

No. Contents Page	
 No.

1.0 Definitions	

1.1	
 Overview

1.2	
 SLOC

1.3	
 Physical	
 SLOC

1.4	
 Logical	
 SLOC

1.5	
 Data	
 declaration	
 line

1.6	
 Compiler	
 directive	

1.7	
 	
 	
 	
 Executable	
 Keywords

1.8	
 Blank	
 line

1.9	
 Comment	
 line

1.10	
 Executable	
 line	
 of	
 code

4	

4	

4	

4	

4	

4	

5	

5	

5	

5	

6

2.0 Checklist	
 for	
 source	
 statement	
 counts 7

3.0 Examples	
 of	
 logical	
 SLOC	
 counting	

3.1	
 Executable	
 Lines

3.1.1	
 Selection	
 Statements

3.1.2	
 Iteration	
 Statements

3.1.3	
 Jump	
 Statements

3.1.4	
 Expression	
 Statements

3.1.5	
 Block	
 Statements

3.2	
 Declaration	
 lines

3.3	
 Compiler	
 directives

9	

9	

9	

10	

11	

12	

13	

13	

13

4.0 Cyclomatic	
 Complexity 14

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

4

1. Definitions	

1.1. Overview	
 –	
 Unified	
 Code	
 Count	
 (UCC)	
 has	
 a	
 Procedural	
 Programming	
 perspective	
 when	
 looking	
 at	
 languages	

and	
 source	
 files,	
 rather	
 than	
 an	
 Object	
 Oriented	
 or	
 Function	
 Programming	
 point	
 of	
 view	
 that	
 Scala	
 supports.	

Although	
 this	
 difference	
 may	
 cause	
 a	
 “disconnect”	
 from	
 a	
 Scala	
 developer’s	
 point	
 of	
 view,	
 it	
 is	
 hope	
 that	
 the	

metrics	
 gathered	
 by	
 UCC	
 will	
 be	
 of	
 use	
 to	
 the	
 Scala	
 community.	
 	

1.2. SLOC	
 – Source	
 Lines	
 of	
 Code	
 is	
 a	
 unit	
 used	
 to	
 measure	
 the	
 size	
 of	
 software	
 program.	
 SLOC	
 counts	
 the	

program	
 source	
 code	
 based	
 on	
 a	
 certain	
 set	
 of	
 rules.	
 SLOC	
 is	
 a	
 key	
 input	
 for	
 estimating	
 project	
 effort	
 and	
 is	

also	
 used	
 to	
 calculate	
 productivity	
 and	
 other	
 measurements.	

1.3. Physical	
 SLOC – One	
 physical	
 SLOC	
 is	
 corresponding	
 to	
 one	
 line	
 starting	
 with	
 the	
 first	
 character	
 and	
 ending	

by	
 a	
 carriage	
 return	
 or	
 an	
 end-­‐of-­‐file	
 marker	
 of	
 the	
 same	
 line,	
 and	
 which	
 excludes	
 the	
 blank	
 and	
 comment	

line.	

1.4. Logical	
 SLOC	
 – Lines	
 of	
 code	
 intended	
 to	
 measure	
 “statements”,	
 which	
 normally	
 terminate	
 by	
 a	
 semicolon	

(C/C++,	
 Java,	
 C#)	
 or	
 a	
 carriage	
 return	
 (VB,	
 Assembly),	
 etc.	
 Logical	
 SLOC	
 are	
 not	
 sensitive	
 to	
 format	
 and	
 style	

conventions,	
 but	
 they	
 are	
 language-­‐dependent.	
 A	
 Scala	
 interpretor/compiler	
 infers	
 line	
 endings	
 without	

requiring	
 the	
 source	
 code	
 to	
 have	
 very	
 many	
 semicolons.	
 A	
 semicolon	
 is	
 needed	
 to	
 separate	
 2	
 or	
 more	

logical	
 source	
 statements	
 on	
 the	
 same	
 physical	
 line,	
 but	
 a	
 line	
 with	
 only	
 1	
 logical	
 statement	
 does	
 not	
 require	

a	
 semicolon.	
 Hence,	
 UCC	
 gives	
 an	
 approximation	
 for	
 Logical	
 SLOC	
 that	
 might	
 not	
 exactly	
 match	
 what	
 is	

expected.	
 	

1.5. Data	
 declaration	
 line	
 or	
 data	
 line – A	
 line	
 that	
 contains	
 declaration	
 of	
 data	
 and	
 used	
 by	
 an	
 assembler	
 or	

compiler	
 to	
 interpret	
 other	
 elements	
 of	
 the	
 program.	

The	
 following	
 table	
 lists	
 the	
 Scala	
 keywords	
 that	
 denote	
 data	
 declaration	
 lines:	

abstract	
 Array	
 Boolean	
 Byte	
 Char
class	
 Double	
 extends	
 Float	
 HashMap

HashSet	
 implements	
 Int	
 LinkedHashMap	
 LinkedList
Long	
 object	
 override	
 private	
 protected
sealed	
 Short	
 static	
 String	
 TreeMap
val	
 var	
 Vector	
 	
 	

Table	
 1	
 	
 Data	
 Declaration	
 Types	

	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

5

1.6. Compiler	
 Directives – A	
 statement	
 that	
 tells	
 the	
 compiler	
 how	
 to	
 compile	
 a	
 program,	
 but	
 not	
 what	
 to	

compile.	

The	
 following	
 table	
 lists	
 the	
 Scala	
 keywords	
 that	
 denote	
 compiler	
 directives:	

package import

Table	
 2	
 	
 Compiler	
 Directives	

	

1.7. Executable	
 Keywords	
 –	
 Scala	
 keywords	
 are	
 reserved	
 with	
 predefined	
 characteristics	
 as	
 far	
 as	
 syntax	
 and	

meanings	
 (semantic	
 or	
 otherwise)	
 to	
 enable	
 various	
 Scala	
 language	
 specific	
 features.	

The	
 following	
 table	
 lists	
 the	
 Scala	
 executable	
 keywords:	

break	
 case	
 catch	
 def	
 do

else	
 finally	
 for	
 if	
 match

new	
 return	
 super	
 this	
 throw

try	
 while	
 	
 	
 	

Table	
 3	
 	
 Executable	
 Keywords	

	

1.8. Blank	
 Line	
 – A	
 physical	
 line	
 of	
 code,	
 which	
 contains	
 any	
 number	
 of	
 white	
 space	
 characters	
 (spaces,	
 tabs,	

form	
 feed,	
 carriage	
 return,	
 line	
 feed,	
 or	
 their	
 derivatives).	

1.9. Comment	
 Line – A	
 comment	
 is	
 defined	
 as	
 a	
 string	
 of	
 zero	
 or	
 more	
 characters	
 that	
 follow	
 language-­‐specific	

comment	
 delimiter.	

Scala	
 comment	
 delimiters	
 are	
 “//”	
 	
 for	
 a	
 single	
 line	
 (until	
 the	
 end	
 of	
 the	
 line)	
 and	
 “/*”	
 for	
 a	
 possible	
 multiline	

comment.	
 	
 A	
 whole	
 comment	
 line	
 may	
 span	
 one	
 line	
 and	
 does	
 not	
 contain	
 any	
 compliable	
 source	
 code.	
 	
 An	

embedded	
 comment	
 can	
 co-­‐exist	
 with	
 compliable	
 source	
 code	
 on	
 the	
 same	
 physical	
 line.	
 	
 Banners	
 and	

empty	
 comments	
 are	
 treated	
 as	
 types	
 of	
 comments.	
 Scala	
 allows	
 nesting	
 of	
 multiline	
 comments	
 to	
 any	

arbitrary	
 depth,	
 for	
 example:	
 	

/*	
 This	
 is	
 an	
 outer	
 block	
 comment	
 	

/*	
 this	
 is	
 an	
 inner	
 block	
 comment	
 */	
 	

now	
 ending	
 the	
 outer	
 block	
 */	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

6

1.10. Executable	
 Line	
 of	
 code –	
 A	
 line	
 that	
 contains	
 software	
 instruction	
 executed	
 during	
 runtime	
 and	
 on	
 which	
 a	

breakpoint	
 can	
 be	
 set	
 in	
 a	
 debugging	
 tool.	
 	
 An	
 instruction	
 can	
 be	
 stated	
 in	
 a	
 simple	
 or	
 compound	
 form.	

• An	
 executable	
 line	
 of	
 code	
 may	
 contain	
 the	
 following	
 program	
 control	
 statements:	

▪ Selection	
 statements	
 (if,	
 match)	

▪ Iteration	
 statements	
 (for,	
 while,	
 do-­‐while)	

▪ Empty	
 statements	
 (one	
 or	
 more	
 “;”)	

▪ Jump	
 statements	
 (return,	
 break,	
 exit	
 function)	

▪ Expression	
 statements	
 (function	
 calls,	
 assignment	
 statements,	
 operations,	
 etc.)	

▪ Block	
 statements	

NOTE:	
 See	
 Section	
 3	
 of	
 this	
 document	
 for	
 examples	
 of	
 control	
 statements.	

• An	
 executable	
 line	
 of	
 code	
 may	
 not	
 contain	
 the	
 following	
 statements:	

▪ Compiler	
 directives	

▪ Data	
 declaration	
 (data)	
 lines	

▪ Whole	
 line	
 comments,	
 including	
 empty	
 comments	
 and	
 banners	

▪ Blank	
 lines	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

7

2. Checklist	
 for	
 source	
 statement	
 counts	

PHYSICAL	
 SLOC	
 COUNTING	
 RULES

MEASUREMENT	
 UNIT
ORDER	
 OF	

PRECEDENCE
PHYSICAL	
 SLOC COMMENTS

Executable	
 Lines 1 One	
 Per	
 line Defined	
 in	
 1.10	

Keywords	
 in	
 1.7

Non-­‐executable	
 Lines

Declaration	
 (Data)	
 lines 2 One	
 per	
 line Defined	
 in	
 1.5

Compiler	
 Directives 3 One	
 per	
 line Defined	
 in	
 1.6

Comments Defined	
 in	
 1.9

	
 	
 	
 	
 	
 	
 	
 	
 	
 On	
 their	
 own	
 lines 4 Not	
 Included	
 (NI)

	
 	
 	
 	
 	
 	
 	
 	
 	
 Embedded 5 NI

	
 	
 	
 	
 	
 	
 	
 	
 	
 Banners 6 NI

	
 	
 	
 	
 	
 	
 	
 	
 	
 Empty	
 Comments 7 NI

Blank	
 Lines 8 NI Defined	
 in	
 1.8

	

LOGICAL	
 SLOC	
 COUNTING	
 RULES

NO. STRUCTURE
ORDER	
 OF	

PRECEDENCE
LOGICAL	
 SLOC	
 RULES COMMENTS

R01 “for”,	
 “while”, “match” or	
 “if”
statement

1 Count	
 Once “while” is	
 an	
 independent	

statement.

R02 do	
 {…}	
 while	
 (…);	
 statement 2 Count	
 Once Braces	
 {…}	
 and	
 semicolon	
 ;	

used	
 with	
 this	
 statement	

are	
 not	
 counted.

R03 Statements	
 ending	
 by	
 a	

semicolon

3 Count	
 once	
 per	
 statement,	

including	
 empty	
 statement

Semicolons	
 within	
 “for”
statement	
 are	
 not	

counted.	
 Semicolons	
 used	

with	
 R01	
 and	
 R02	
 are	
 not	

counted.

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

8

R04 Block	
 delimiters,	
 braces	
 {…} 4 Count	
 once	
 per	
 pair	
 of	
 braces	

{..},	
 except	
 where	
 a	
 closing	

brace	
 is	
 followed	
 by	
 a	

semicolon,	
 i.e.	
 };or	
 an	

opening	
 brace	
 comes	
 after	
 a	

keyword	
 “else”.

Braces	
 used	
 with	
 R01	
 and	

R02	
 are	
 not	
 counted.	

Function	
 definition	
 is	

counted	
 once	
 since	
 it	
 is	

followed	
 by	
 {…}.

R05 Compiler	
 Directive 5 Count	
 once	
 per	
 directive

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

9

3. Examples	

EXECUTABLE	
 LINES

	

SELECTION	
 Statement	

ESS1	
 – if,	
 else	
 if,	
 else	
 and	
 nested	
 if	
 statements

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

if	
 (<boolean	
 expression>)	
 	

	
 	
 	
 	
 	
 	
 	
 <statements>;	

	

if	
 (<boolean	
 expression>)	
 	
 	

	
 	
 	
 	
 	
 	
 	
 <statements>;	

else	
 <statements>;	

	

	

	

if	
 (<boolean	
 expression>)	
 	
 	

	
 	
 	
 	
 	
 	
 <statements>;	

else	
 if	
 (<boolean	
 expression>)	

	
 	
 	
 	
 	
 	
 <statements>;.	

.	

.	

else	
 <statements>;	

	

	

NOTE:	
 complexity	
 is	
 not	
 considered,	
 i.e.	

multiple	
 “&&” or	
 “||” as	
 part	
 of	
 the	

expression.

	

if	
 (x	
 !=	
 0)	
 	

	
 	
 	
 	
 System.out.print	
 (“non-­‐zero”);	

	

if	
 (x	
 >	
 0)	
 	

	
 	
 	
 System.out.print	
 	
 (“positive”);	

else	
 	

	
 	
 	
 System.out.print	
 	
 (“negative”);	

	

	

if	
 (x	
 ==	
 0)	
 	

	
 	
 	
 	
 System.out.print	
 	
 (“zero”);	

else	
 if	
 (x	
 >	
 0)	
 	

	
 	
 	
 	
 System.out.print	
 	
 (“positive”);	

else	
 {	

	
 	
 	
 	
 System.out.print	
 	
 (“negative”);	

}	

	

if	
 ((x	
 !=	
 0)	
 &&	
 (x	
 >	
 0))	
 	

	
 	
 	
 	
 System.out.print	
 	
 (x);	

	

1	

1	

	

1	

1	

0	

1	

	

	

1	

1	

1	

1	

0	

1	

0	

	

1	
 	
 	

1

ESS2	
 –	
 match	
 and	
 nested	
 match	
 statements

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

match	
 (<expression>)	

{	

	
 	
 	
 	
 case	
 <constant	
 1>	
 :	

	
 	
 	
 	
 	
 	
 	
 	
 <statements>;	

	
 	
 	
 	
 	
 	
 	
 	
 break;	

	
 	
 	
 	
 default	

	
 	
 	
 	
 	
 	
 	
 	
 <statements>;	

}	

	

match	
 (number)	

{	

	
 	
 	
 	
 case	
 1:	

	
 	
 	
 	
 	
 	
 	
 	
 foo1();	

	
 	
 	
 	
 	
 	
 	
 	
 break;	

	
 	
 	
 	
 default	

	
 	
 	
 	
 	
 	
 	
 	
 System.out.print	
 (“invalid	
 case”);	

}

	

1	

0	

0	

1	

1	

0	

1	

0	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

10

ESS3	
 – try-­‐catch

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

try	
 	

{	
 	

	
 	
 	
 //	
 code	
 that	
 could	
 throw	
 	

	
 	
 	
 //	
 an	
 exception	
 	

}	
 	

catch	
 (exception-­‐declaration)	
 	

{	
 	

	
 	
 	
 //	
 code	
 that	
 executes	
 when	

	
 	
 	
 //	
 exception-­‐declaration	
 is	
 thrown	
 	
 	

	
 	
 	
 //	
 in	
 the	
 try	
 block	
 	

}	

	

try	
 {	

	
 	
 	
 	
 	
 inputFileName=args[0];	

}	

catch	
 (IOException	
 e)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 System.err.println(e);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 System.exit(1);	

}	
 	

	

1	

1	

0	

1	

1	

1	

0	

	

ITERATION	
 Statement	

EIS1	
 -­‐	
 for

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

for	
 (initialization;	
 condition;	
 increment)	

statement;	

	

	

NOTE:	
 “for” statement	
 counts	
 as	
 one,	
 no	

matter	
 how	
 many	
 optional	
 expressions	
 it	

contains,	
 i.e.	

	
 for	
 (i	
 =	
 0,	
 j	
 =	
 0;	
 i	
 <	
 5,	
 j	
 <	
 10;	
 i++,	
 ,j++)

	

for	
 (i	
 =	
 0;	
 i	
 <	
 10;	
 i++)	
 	

	
 	
 	
 	
 printf	
 (“%d”,	
 i);	

	

	

1	

1	

	

	

	

	

	

EIS2	
 – empty	
 statements	
 (could	
 be	
 used	
 for	
 time	
 delays	
 –	
 not	
 recommended)

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

for	
 (i	
 =	
 0;	
 i	
 <	
 SOME_VALUE;	
 i++)	
 ;	

	

for	
 (i	
 =	
 0;	
 i	
 <	
 10;	
 i++)	
 ; 2

EIS3	
 -­‐	
 while

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

while	
 (<boolean	
 expression>)	

<statement>;

while	
 (i	
 <	
 10)	
 	

{	

	
 	
 	
 	
 System.out.print	
 (i);	

	
 	
 	
 	
 i++;	

}	

1	

0	

1	

1	

0

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

11

EIS4	
 – do-­‐while

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

do	

{	

	
 	
 	
 	
 <statements>;	

}	
 while	
 (<boolean	
 expression>);	

	

	

do	

{	

	
 	
 	
 	
 ch	
 =	
 getCharacter();	

}	
 while	
 (ch	
 !=	
 ‘\n’);

	

1	

0	

1	

1

EIS5	
 – for-­‐each

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

for	
 (<boolean	
 expression>)	

	
 	
 	
 <statements>;	

	

for (String n: Names)
System.out.println(ncharAt(0));

	

1	

1

	

JUMP	
 Statement	

EJS1	
 -­‐	
 return

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

return	
 expression

	

if	
 (lineCount==0)	
 	

	
 	
 	
 	
 return;	

1	

1

EJS2	
 -­‐	
 break

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

break;

	

if	
 (complexity	
 >	
 10)	
 	

	
 	
 	
 	
 break;	

1	

1

EJS3	
 – exit	
 function

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

void	
 exit	
 (int	
 return_code);

	

if	
 (x	
 <	
 0)	
 	

	
 	
 	
 	
 exit	
 (1);	

1	

1

	

	

	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

12

EJS4	
 – continue

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

continue;

while	
 (!done)	

{	

	
 	
 	
 	
 ch	
 =	
 getCharacter();	

	
 	
 	
 	
 if	
 (char	
 ==	
 ‘\n’)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 done	
 =	
 true;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 continue;	

	
 	
 	
 	
 }	

}

1	

0	

1	

1	

0	

1	

1	

0	

0

	

EXPRESSION	
 Statement	

EES1	
 – function	
 call

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

<function_name>	
 (
 <parameters>	
);	

	

read_file	
 (name); 1

EES2	
 – assignment	
 statement

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

<name>	
 =	
 <value>;	

	

	

x	
 =	
 y;	

char	
 name[6]	
 =	
 “file1”;	

a	
 =	
 1;	
 b	
 =	
 2;	
 c	
 =	
 3;	

	

1	

1	

3

ESS3	
 – empty	
 statement	
 (is	
 counted	
 as	
 it	
 is	
 considered	
 to	
 be	
 a	
 placeholder	
 for	
 something	
 to	
 call	

attention)

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

one	
 or	
 more	
 “;” in	
 succession	

; 1	
 per	
 each

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

13

	

BLOCK	
 Statement	

EBS1	
 – block=related	
 statements	
 treated	
 as	
 a	
 unit

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

/*	
 start	
 of	
 block	
 */	

{	

	
 	
 	
 	
 	
 <definitions>	

	
 	
 	
 	
 	
 <statement>	

}	
 	

/*	
 end	
 of	
 block	
 */	

	

/*	
 start	
 of	
 block	
 */	

{	
 	

	
 	
 	
 	
 	
 i	
 =	
 0;	

	
 	
 	
 	
 	
 System.out.print	
 (“%d”,	
 i);	

}	
 	

/*	
 end	
 of	
 block	
 */

	

0	

0	

1	

1	

1	

0

	

	

DECLARATION	
 OR	
 DATA	
 LINES

DDL1	
 – function	
 prototype,	
 variable	
 declaration

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

<type>	
 <name>	
 (
 <	
 parameter_list>	
);	
 	
 	
 	
 	
 	

	

<type>	
 <name>;	

	

Class<T>	
 	
 	
 	
 	
 	

private	
 static	
 void	
 foo	
 (int	
 param);	
 	
 	
 	
 	

	

double	
 amount;	

	

Iterator<String>

1	

	

1	

	

1	

	

	

	

COMPILER	
 DIRECTIVES

CDL1	
 – directive	
 types

GENERAL	
 EXAMPLE SPECIFIC	
 EXAMPLE SLOC	
 COUNT

	

package	
 <package_name>	

import	
 	
 	
 <package_name>	

	

package	
 test	

import	
 scala.math._

1	

1

	

	

	

Center	
 for	
 Systems	
 and	
 Software	
 Engineering 2015

14

	

4. Cyclomatic	
 Complexity	

Cyclomatic	
 complexity	
 measures	
 the	
 number	
 of	
 linearly	
 independent	
 paths	
 through	
 a	
 program.	
 	
 It	
 is	
 measured	

for	
 each	
 function,	
 procedure,	
 or	
 method	
 according	
 to	
 each	
 specific	
 program	
 language.	
 	
 This	
 metric	
 indicates	
 the	

risk	
 of	
 program	
 complexity	
 and	
 also	
 determines	
 the	
 number	
 of	
 independent	
 test	
 required	
 to	
 verify	
 program	

coverage.	

	

The	
 cyclomatic	
 complexity	
 is	
 computed	
 by	
 counting	
 the	
 number	
 of	
 decisions	
 plus	
 one	
 for	
 the	
 linear	
 path.	
 	

Decisions	
 are	
 determined	
 by	
 the	
 number	
 of	
 conditional	
 statements	
 in	
 a	
 function.	
 	
 A	
 function	
 without	
 any	

decisions	
 would	
 have	
 a	
 cyclomatic	
 complexity	
 of	
 one.	
 	
 Each	
 decision	
 such	
 as	
 an	
 if	
 condition	
 or	
 a	
 for	
 loop	
 adds	

one	
 to	
 the	
 cyclomatic	
 complexity.	

	

The	
 cyclomatic	
 complexity	
 metric	
 v(G)	
 was	
 defined	
 by	
 Thomas	
 McCabe.	
 	
 Several	
 variations	
 are	
 commonly	
 used	

but	
 are	
 not	
 included	
 in	
 the	
 UCC.	
 	
 The	
 modified	
 cyclomatic	
 complexity	
 counts	
 select	
 blocks	
 as	
 a	
 single	
 decision	

rather	
 than	
 counting	
 each	
 case.	
 	
 The	
 strict	
 or	
 extended	
 cyclomatic	
 complexity	
 includes	
 boolean	
 operators	
 within	

conditional	
 statements	
 as	
 additional	
 decisions.	
 	
 Please	
 see:	
 cyclomatic_complexity_standard.pdf	
 which	
 has	

more	
 details	
 of	
 different	
 ways	
 specific	
 cyclomatic	
 complexity	
 metrics	
 are	
 found	
 and	
 presented.	

	

Cyclomatic	
 Complexity	
 Risk	
 Evaluation	

1-­‐10	
 A	
 simple	
 program,	
 without	
 much	
 risk	

11-­‐20	
 More	
 complex,	
 moderate	
 risk	

21-­‐50	
 Complex,	
 high	
 risk	
 program	

>	
 50	
 Untestable	
 program,	
 very	
 high	
 risk	

	

For	
 Scala,	
 the	
 following	
 table	
 lists	
 the	
 conditional	
 keywords	
 used	
 to	
 compute	
 cyclomatic	
 complexity.	

	

Scala	

Statement	

CC	
 Count	
 Rationale	

if	
 +1	
 if	
 adds	
 a	
 decision	

else	
 if	
 +1	
 else	
 if	
 adds	
 a	
 decision	

else	
 0	
 Decision	
 is	
 at	
 the	
 if	
 statement	

match	
 /	
 case	
 +1	
 per	

case	

Each	
 case	
 adds	
 a	
 decision	
 –	
 not	
 the	
 match	

for	
 +1	
 for	
 adds	
 a	
 decision	
 at	
 loop	
 start	

while	
 +1	
 while	
 adds	
 a	
 decision	
 at	
 loop	
 start	
 or	
 at	
 end	
 of	
 do	
 loop	

do	
 0	
 Decision	
 is	
 at	
 while	
 statement	
 –	
 no	
 decision	
 at	

unconditional	
 loop	

try	
 0	
 Decision	
 is	
 at	
 catch	
 statement	

catch	
 +1	
 catch	
 adds	
 a	
 decision	
 	

	

