Scala CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

December , 2015

Center for Systems and Software Engineering | 2015

Revision Sheet

Date

Version

Revision Description

Author

12/23/15

1.0

Original Release

Randy Maxwell

Center for Systems and Software Engineering | 2015

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 Overview 4
1.2 SLOC 4
1.3 Physical SLOC 4
1.4 Logical SLOC 4
1.5 Data declaration line 4
1.6 Compiler directive 5
1.7 Executable Keywords 5
1.8 Blank line 5
1.9 Comment line 5
1.10 Executable line of code 6
2.0 Checklist for source statement counts 7
3.0 Examples of logical SLOC counting 9
3.1 Executable Lines 9
3.1.1Selection Statements 9
3.1.2Iteration Statements 10
3.1.3Jump Statements 11
3.1.4Expression Statements 12
3.1.5Block Statements 13
3.2 Declaration lines 13
3.3 Compiler directives 13
4.0 Cyclomatic Complexity 14

Center for Systems and Software Engineering | 2015

1.1.

1.2.

1.3.

1.4.

1.5.

Definitions

Overview - Unified Code Count (UCC) has a Procedural Programming perspective when looking at languages
and source files, rather than an Object Oriented or Function Programming point of view that Scala supports.
Although this difference may cause a “disconnect” from a Scala developer’s point of view, it is hope that the

metrics gathered by UCC will be of use to the Scala community.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the
program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending
by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

Logical SLOC - Lines of code intended to measure “statements”, which normally terminate by a semicolon
(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style
conventions, but they are language-dependent. A Scala interpretor/compiler infers line endings without
requiring the source code to have very many semicolons. A semicolon is needed to separate 2 or more
logical source statements on the same physical line, but a line with only 1 logical statement does not require
a semicolon. Hence, UCC gives an approximation for Logical SLOC that might not exactly match what is

expected.

Data declaration line or data line — A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the Scala keywords that denote data declaration lines:

abstract Array Boolean Byte Char
class Double extends Float HashMap

HashSet implements Int LinkedHashMap LinkedList
Long object override private protected

sealed Short static String TreeMap
val var Vector

Table 1 Data Declaration Types

Center for Systems and Software Engineering | 2015

1.6. Compiler Directives — A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Scala keywords that denote compiler directives:

package import

Table 2 Compiler Directives

1.7. Executable Keywords — Scala keywords are reserved with predefined characteristics as far as syntax and

meanings (semantic or otherwise) to enable various Scala language specific features.

The following table lists the Scala executable keywords:

break case catch def do
else finally for if match
new return super this throw
try while
Table 3 Executable Keywords
1.8. Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

1.9. Comment Line — A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Scala comment delimiters are “//” for a single line (until the end of the line) and “/*” for a possible multiline
comment. A whole comment line may span one line and does not contain any compliable source code. An
embedded comment can co-exist with compliable source code on the same physical line. Banners and
empty comments are treated as types of comments. Scala allows nesting of multiline comments to any

arbitrary depth, for example:

/* This is an outer block comment

/* this is an inner block comment */

now ending the outer block */

Center for Systems and Software Engineering | 2015

1.10. Executable Line of code — A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

e An executable line of code may contain the following program control statements:

» Selection statements (if, match)

» lteration statements (for, while, do-while)

* Empty statements (one or more “;”)

* Jump statements (return, break, exit function)

» Expression statements (function calls, assighment statements, operations, etc.)

= Block statements

NOTE: See Section 3 of this document for examples of control statements.

e An executable line of code may not contain the following statements:

= Compiler directives

» Data declaration (data) lines

* Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2015

2. Checklist for source statement counts

PHYsIcAL SLOC COUNTING RULES

Executable Lines 1 One Per line Defined in 1.10
Keywords in 1.7

Non-executable Lines

Declaration (Data) lines 2 One per line Defined in 1.5
Compiler Directives 3 One per line Defined in 1.6
Comments Defined in 1.9
On their own lines 4 Not Included (NI)
Embedded 5 NI
Banners 6 NI
Empty Comments 7 NI
Blank Lines 8 NI Defined in 1.8

LoGicAL SLOC COUNTING RULES

RO1 | “for”, “while”, “match” or “if” 1 Count Once “while” is an independent
statement statement.
R0O2 do {...} while (...); statement 2 Count Once Braces {...} and semicolon ;

used with this statement
are not counted.

RO3 Statements ending by a 3 Count once per statement, | Semicolons within “for”
semicolon including empty statement | statement are not
counted. Semicolons used
with RO1 and RO2 are not
counted.

Center for Systems and Software Engineering | 2015

RO4 Block delimiters, braces {...} 4 Count once per pair of braces | Braces used with R01 and
{..}, except where a closing | R02 are not counted.
brace is followed by a Function definition is
semicolon, i.e. };or an counted once since it is

opening brace comes after a | followed by {...}.
keyword “else”.

RO5 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering | 2015

3.Examples

EXECUTABLE LINES

ESS1 - if, else if, else and nested if statements

if (<boolean expression>)
<statements>;

if (<boolean expression>)
<statements>;
else <statements>;

if (<boolean expression>)
<statements>;

else if (<boolean expression>)
<statements>;.

else <statements>;

NOTE: complexity is not considered, i.e.
multiple “&&” or “||” as part of the
expression.

if (x 1=0)
System.out.print (“non-zero”);

if (x> 0)

System.out.print (“positive”);
else

System.out.print (“negative”);

if (x==0)

System.out.print (“zero”);
else if (x> 0)

System.out.print (“positive”);
else {

System.out.print (“negative”);

}

if ((x 1=0) && (x > 0))
System.out.print (x);

OR OR R R _ O R [

=

ESS2 — match and nested match statements

match (<expression>)
{
case <constant 1>:
<statements>;
break;
default
<statements>;

match (number)
{
case 1:
fool();
break;
default
System.out.print (“invalid case”);

O FrRrOFRPF OO

2015

Center for Systems and Software Engineering

ESS3 — try-catch

try try { 1
{ inputFileName=args[0]; 1

// code that could throw } 0

// an exception catch (IOException e) { 1
} System.err.printin(e); 1
catch (exception-declaration) System.exit(1); 1
{ } 0

// code that executes when
// exception-declaration is thrown
// in the try block

EIS1 - for

for (initialization; condition; increment) for (i=0;i<10; i++) 1
statement; printf (“%d”, i); 1

NOTE: “for” statement counts as one, no
matter how many optional expressions it
contains, i.e.

for(i=0,j=0;i<5,j<10; i++, ,j++)

EIS2 — empty statements (could be used for time delays — not recommended)

for (i=0; i < SOME_VALUE; i++) ; for (i=0;i<10;i++); 2

EIS3 - while

while (i < 10) 1

while (<boolean expression>) { 0
<statement>; System.out.print (i); 1
i++; 1

} 0

Center for Systems and Software Engineering | 2015
EIS4 — do-while
do do 1
{ { 0
<statements>; ch = getCharacter(); 1
} while (<boolean expression>); }while (ch I=\n’); 1

EIS5 — for-each

for (<boolean expression>) for (String n: Names)
<statements>; System.out.println(ncharAt(0));

EJS1 - return

if (lineCount==0) 1
return; 1

return expression

EJS2 - break

if (complexity > 10) 1

break; break; 1

EJS3 — exit function

void exit (int return_code); if (x<0) 1
exit (1); 1

11

2015

Center for Systems and Software Engineering

EJS4 — continue

while (!done) 1

continue; { 0
ch = getCharacter(); 1

if (char == \n’) 1

{ 0

done = true; 1

continue; 1

} 0

} 0

EES1 — function call

<function_name> (<parameters>); read_file (name); 1

EES2 — assignment statement

<name> = <value>; X=Yy; 1
char name[6] = “file1”; 1
a=1;b=2;c=3; 3

ESS3 — empty statement (is counted as it is considered to be a placeholder for something to call
attention)

u.n

one or more “;” in succession ; 1 per each

12

Center for Systems and Software Engineering | 2015

EBS1 — block=related statements treated as a unit

/* start of block */
{

<definitions>
<statement>

}
/* end of block */

/* start of block */
{
i=0;
System.out.print (“%d”, i);
}
/* end of block */

O P, EFL OO

DECLARATION OR DATA LINES

DDL1 - function prototype, variable declaration

<type> <name> (< parameter_list>);
<type><name>;

Class<T>

private static void foo (int param);
double amount;

Iterator<String>

CoMPILER DIRECTIVES

CDL1 — directive types

package <package_name>
import <package_name>

package test
import scala.math._

13

Center for Systems and Software Engineering | 2015

4.Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program. It is measured
for each function, procedure, or method according to each specific program language. This metric indicates the
risk of program complexity and also determines the number of independent test required to verify program

coverage.

The cyclomatic complexity is computed by counting the number of decisions plus one for the linear path.
Decisions are determined by the number of conditional statements in a function.
decisions would have a cyclomatic complexity of one. Each decision such as an if condition or a for loop adds

one to the cyclomatic complexity.

The cyclomatic complexity metric v(G) was defined by Thomas McCabe. Several variations are commonly used
but are not included in the UCC. The modified cyclomatic complexity counts select blocks as a single decision
rather than counting each case. The strict or extended cyclomatic complexity includes boolean operators within

conditional statements as additional decisions. Please see: cyclomatic_complexity_standard.pdf which has

more details of different ways specific cyclomatic complexity metrics are found and presented.

Cyclomatic Complexity

Risk Evaluation

1-10 A simple program, without much risk
11-20 More complex, moderate risk

21-50 Complex, high risk program

>50 Untestable program, very high risk

For Scala, the following table lists the conditional keywords used to compute cyclomatic complexity.

A function without any

Scala CC Count Rationale
Statement
if +1 if adds a decision
else if +1 else if adds a decision
else 0 Decision is at the if statement
match / case +1 per Each case adds a decision — not the match
case
for +1 for adds a decision at loop start
while +1 while adds a decision at loop start or at end of do loop
do 0 Decision is at while statement — no decision at
unconditional loop
try 0 Decision is at catch statement
catch +1 catch adds a decision

14

