O,

“ 1113 Verilog CodeCount™
EEEE

esmmmm——— Counting Standard

University of Southern California

Center for Systems and Software Engineering

January , 2013

Center for Systems and Software Engineering | 2013

Revision Sheet

Date

Version

Revision Description

Author

1/7/2013

1.0

Original Release

CSSE

Center for Systems and Software Engineering | 2013

Table of Contents

No. Contents Page No.
1.0 Definitions 4
1.1 SLOC 4
1.2 Physical SLOC 4
1.3 Logical SLOC 4
14 Data declaration line 4
1.5 Compiler directive 4
1.6 Blank line 4
1.7 Comment line 5
1.8 Executable line of code 5
2.0 Checklist for source statement counts 6
3.0 Examples of logical SLOC counting 7
3.1 Executable Lines 7
3.11 Assignment Statements 7
3.1.2 Block Statements 7
3.2 Declaration lines 9
3.3 Compiler directives 11

Center for Systems and Software Engineering | 2013

1. Definitions

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

SLOC - Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

Physical SLOC — One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

Logical SLOC — Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

Data declaration line or data line — A line that contains declaration of data and

compiler to interpret other elements of the program.

The following table lists the Verilog keywords that denote data declaration lines:

used by an assembler or

Simple Data Types Net Data Types Register DataTypes Input Data Types
event supply0 reg input
function supplyl output
integer tri inout
module trio
parameter tril
real triand
realtime trior
task trireg
time wand

wire
wor

Table 1 Data Declaration Types

Compiler Directives — A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Verilog directives:

“define

‘include

‘ifdef

‘else

‘endif

“timescale

Table 2 Compiler Directives

Blank Line — A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Center for Systems and Software Engineering | 2013

1.7.

1.8.

Comment Line — A comment is defined as a string of zero or more characters that follow language-specific
comment delimiter.
Verilog comment delimiters are “//“ and “/*”. A whole comment line may span one line and does not
contain any compilable source code. An embedded comment can co-exist with compilable source code on
the same physical line. Banners and empty comments are treated as types of comments.
Executable Line of code — A line that contains software instruction executed during runtime and on which a
breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.
¢ An executable line of code may contain the following program control statements:
= Selection statements (if, ? operator, switch)
= [teration statements (for, while, do-while)
= Empty statements (one or more “;”)
= Jump statements (return, goto, break, continue, exit function)
= Expression statements (function calls, assignment statements, operations, etc.)
= Block statements
e An executable line of code may not contain the following statements:
= Compiler directives
= Data declaration (data) lines
= Whole line comments, including empty comments and banners

= Blank lines

Center for Systems and Software Engineering | 2013

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

Executable Lines 1 One per line
Non-executable Lines
Declaration (Data) lines 2 One per line
Compiler Directives 3 Once per directive
Comments Not Included (NI)
One their own lines 4 NI
Embedded 5 NI
Banner 6 NI
Empty Comments 7 NI
Blank Lines 8 NI

LoGICcAL SLOC COUNTING RULES

RO1 Module/ 1 Count once during definition Declare then
Function/Task assighment
Declarations statements are
counted as
declaration
statements
RO2 Assignment 2 Count once
Statements
RO3 | Block Statements 3 Count once
RO4 | Statements ending 4 Count once per statement, including
by a semicolon empty statement
RO5 | Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering | 2013

3. Examples

EXECUTABLE LINES

ASSIGNMENT Statements

EAS1 - assign statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
assign wire_variable = expression; assign b = c&d; 1
BLOcCk Statements
EBS1 - always statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
always @(event_1 or event_2or...) always @(posedge c) 1
begin begin 0
... Statements ... a<=b; 1
end b <= 3a; 1
end 0
EBS2 —initial statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
initial initial 0
begin begin 0
... Statements ... clr =0; // variables initialized at 1
end clk = 1; // beginning of the simulation 1
end 0
EBS3 —if...else statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
if (expression) if (alu_func == 2’b00) 1
begin aluout=a+b; 1
... Statements ... else if (alu_func == 2’b01) 1
end aluout=a-b; 1
else if (expression) else if (alu_func == 2’b10) 1
begin aluout=a & b; 1
... Statements ... else // alu_func==2"b11 0
end aluout=a | b; 1
...more else if blocks ... if (a == b) // This if with no else will generate 1
else begin // a latch for x and ot. This is so they 0
begin x = 1; // will hold their old value if (a != b). 1
... statements ... ot=4'b1111; 1
end end 0

Center for Systems and Software Engineering | 2013

EBS4 — case statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
case (expression) case (state) 1
case_choicel: stateO: begin 1
begin if (start) nxt_st = statel, 2
... Statements ... else nxt_st = state0; 1
end end 0
case_choice2: statel: begin 1
begin nxt_st = state2; 1
... Statements ... end 0
end state2: begin 1
... more case choices blocks ... if (skip3) nxt_st = stateO; 1
default: else nxt_st = state3; 1
begin end 0
... Statements ... state3: begin 1
end if (wait3) nxt_st = state3; 1
endcase else nxt_st = state0; 1
end 0
default: nxt_st = state0; 1
endcase 0
EBS5 — while statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
while (expression) while (loverflow) begin 1
begin @(posedge clk); 1
... Statements ... a=a+1; 1
end end 0
EBS6 — repeat statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
always @(event_1 or event_2 or...) always @(posedge c) 1
begin begin 0
... Statements ... a<=b; 1
end b <= 3a; 1
end 0
EBS7 —for statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
always @(event_1 or event_2or...) always @(posedge c) 1
begin begin 0
... Statements ... a<=b; 1
end b <= 3a; 1
end 0

Center for Systems and Software Engineering | 2013
EBS8 — forever statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
always @(event_1 or event_2 or...) always @(posedge c) 1
begin begin 0
... Statements ... a<=b; 1
end b <=a; 1
end 0
DECLARATION OR DATA LINES
DDS1 — wire and supply statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
wire [msb:lsb] wire_variable_list; wire c; // simple wire 1
wand d; 1
assign d = a; // value of d is the logical AND of 1
assignd=Db;//aandb 1
wire [9:0] A; // a cable (vector) of 10 wires. 1
supply0 logic_0_wires; supply0 my_gnd; // equivalent to a wire assigned 0 | 1
supplyl logic_1_wires; supplyl a, b; 1
DDS2 - reg statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
reg [msh:Isb] reg_variable_list; reg a; // single 1-bit register variable 1
reg [7:0] tom; // an 8-bit vector; a bank of 8 1
registers.
reg [5:0] b, c; // two 6-bit variables 1
DDS3 - input/output statements
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
component <component_name> [is] component reg32 is 0
[generic (variable_declarations>) ;] generic (setup_time : time := 50 ps; 0
port (pulse_width : time := 100 ps); 1
<input_and_output_variable_declarations> port (input : in std_logic_vector(31 downto 0); 0
); output: out std_logic_vector(31 downto 0); 0
end component <component_name> ; Load :in std_logic_vector; 0
Clk :in std_logic_vector); 1
end component reg32; 0

Center for Systems and Software Engineering | 2013
DDS4 - simple data types statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
component <component_name> [is] component reg32 is 0
[generic (variable_declarations>) ;] generic (setup_time : time := 50 ps; 0
port (pulse_width : time := 100 ps); 1
<input_and_output_variable_declarations> port (input : in std_logic_vector(31 downto 0); 0
); output: out std_logic_vector(31 downto 0); 0
end component <component_name> ; Load :in std_logic_vector; 0
Clk :in std_logic_vector); 1
end component reg32; 0
DDS5 — module statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
component <component_name> [is] component reg32 is 0
[generic (variable_declarations>) ;] generic (setup_time : time := 50 ps; 0
port (pulse_width : time := 100 ps); 1
<input_and_output_variable_declarations> port (input : in std_logic_vector(31 downto 0); 0
); output: out std_logic_vector(31 downto 0); 0
end component <component_name> ; Load :in std_logic_vector; 0
Clk :in std_logic_vector); 1
end component reg32; 0
DDS6 - function statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
component <component_name> [is] component reg32 is 0
[generic (variable_declarations>) ;] generic (setup_time : time := 50 ps; 0
port (pulse_width : time := 100 ps); 1
<input_and_output_variable_declarations> port (input : in std_logic_vector(31 downto 0); 0
); output: out std_logic_vector(31 downto 0); 0
end component <component_name> ; Load :in std_logic_vector; 0
Clk :in std_logic_vector); 1
end component reg32; 0
DDS7 - task statement
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT
component <component_name> [is] component reg32 is 0
[generic (variable_declarations>) ;] generic (setup_time : time := 50 ps; 0
port (pulse_width : time := 100 ps); 1
<input_and_output_variable_declarations> port (input : in std_logic_vector(31 downto 0); 0
); output: out std_logic_vector(31 downto 0); 0
end component <component_name> ; Load :in std_logic_vector; 0
Clk :in std_logic_vector); 1
end component reg32; 0

10

Center for Systems and Software Engineering | 2013
COMPILER DIRECTIVES
CDL1 - directive types
GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

“timescale time_unit / time_precision

“define macro_name text_string
‘include file_name

“ifdef macro
..statements...
“else
..statements...
“endif

“timescale 1 ns /100 ps
// time unit = 1ns; precision = 1/10ns;

“define add_Isb a[7:0] + b[7:0]
‘include “dclr.v”

“ifdef FIRST
Sdisplay("First code is compiled");
“else
“ifdef SECOND
Sdisplay("Second code is compiled");
“else
Sdisplay("Default code is compiled");
“endif
“endif

P R R R RPRRPRP R

11

