

Verilog CodeCount™

Counting Standard

University of Southern California

Center for Systems and Software Engineering

January , 2013

Center for Systems and Software Engineering 2013

2

Revision Sheet

Date Version Revision Description Author

1/7/2013 1.0 Original Release CSSE

Center for Systems and Software Engineering 2013

3

Table of Contents

No. Contents Page No.

1.0 Definitions

1.1 SLOC

1.2 Physical SLOC

1.3 Logical SLOC

1.4 Data declaration line

1.5 Compiler directive

1.6 Blank line

1.7 Comment line

1.8 Executable line of code

4

4

4

4

4

4

4

5

5

2.0 Checklist for source statement counts 6

3.0 Examples of logical SLOC counting

3.1 Executable Lines

3.1.1 Assignment Statements

3.1.2 Block Statements

3.2 Declaration lines

3.3 Compiler directives

7

7

7

7

9

11

Center for Systems and Software Engineering 2013

4

1. Definitions

1.1. SLOC – Source Lines of Code is a unit used to measure the size of software program. SLOC counts the

program source code based on a certain set of rules. SLOC is a key input for estimating project effort and is

also used to calculate productivity and other measurements.

1.2. Physical SLOC – One physical SLOC is corresponding to one line starting with the first character and ending

by a carriage return or an end-of-file marker of the same line, and which excludes the blank and comment

line.

1.3. Logical SLOC – Lines of code intended to measure “statements”, which normally terminate by a semicolon

(C/C++, Java, C#) or a carriage return (VB, Assembly), etc. Logical SLOC are not sensitive to format and style

conventions, but they are language-dependent.

1.4. Data declaration line or data line – A line that contains declaration of data and used by an assembler or

compiler to interpret other elements of the program.

The following table lists the Verilog keywords that denote data declaration lines:

Simple Data Types Net Data Types Register DataTypes Input Data Types

event supply0 reg input

function supply1 output

integer tri inout

module tri0

parameter tri1

real triand

realtime trior

task trireg

time wand

 wire

 wor

Table 1 Data Declaration Types

1.5. Compiler Directives – A statement that tells the compiler how to compile a program, but not what to

compile.

The following table lists the Verilog directives:

`define `include `ifdef `else

`endif `timescale

Table 2 Compiler Directives

1.6. Blank Line – A physical line of code, which contains any number of white space characters (spaces, tabs,

form feed, carriage return, line feed, or their derivatives).

Center for Systems and Software Engineering 2013

5

1.7. Comment Line – A comment is defined as a string of zero or more characters that follow language-specific

comment delimiter.

Verilog comment delimiters are “//“ and “/*”. A whole comment line may span one line and does not

contain any compilable source code. An embedded comment can co-exist with compilable source code on

the same physical line. Banners and empty comments are treated as types of comments.

1.8. Executable Line of code – A line that contains software instruction executed during runtime and on which a

breakpoint can be set in a debugging tool. An instruction can be stated in a simple or compound form.

• An executable line of code may contain the following program control statements:

� Selection statements (if, ? operator, switch)

� Iteration statements (for, while, do-while)

� Empty statements (one or more “;”)

� Jump statements (return, goto, break, continue, exit function)

� Expression statements (function calls, assignment statements, operations, etc.)

� Block statements

• An executable line of code may not contain the following statements:

� Compiler directives

� Data declaration (data) lines

� Whole line comments, including empty comments and banners

� Blank lines

Center for Systems and Software Engineering 2013

6

2. Checklist for source statement counts

PHYSICAL SLOC COUNTING RULES

MEASUREMENT UNIT
ORDER OF

PRECEDENCE
PHYSICAL SLOC COMMENTS

Executable Lines 1 One per line

Non-executable Lines

 Declaration (Data) lines 2 One per line

 Compiler Directives 3 Once per directive

Comments Not Included (NI)

One their own lines 4 NI

Embedded 5 NI

Banner 6 NI

Empty Comments 7 NI

 Blank Lines 8 NI

LOGICAL SLOC COUNTING RULES

NO. STRUCTURE
ORDER OF

PRECEDENCE
LOGICAL SLOC RULES COMMENTS

R01 Module/

Function/Task

Declarations

1 Count once during definition Declare then

assignment

statements are

counted as

declaration

statements

R02 Assignment

Statements

2 Count once

R03 Block Statements 3 Count once

R04 Statements ending

by a semicolon

4 Count once per statement, including

empty statement

R05 Compiler Directive 5 Count once per directive

Center for Systems and Software Engineering 2013

7

3. Examples

EXECUTABLE LINES

ASSIGNMENT Statements

EAS1 – assign statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

assign wire_variable = expression;

assign b = c&d;

1

BLOCK Statements

EBS1 – always statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

always @(event_1 or event_2 or ...)

begin

... statements ...

end

always @(posedge c)

begin

a <= b;

b <= a;

end

1

0

1

1

0

EBS2 – initial statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

initial

begin

... statements ...

end

initial

begin

clr = 0; // variables initialized at

clk = 1; // beginning of the simulation

end

0

0

1

1

0

EBS3 – if…else statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

if (expression)

begin

... statements ...

end

else if (expression)

begin

... statements ...

end

...more else if blocks ...

else

begin

... statements ...

end

if (alu_func == 2’b00)

aluout = a + b;

else if (alu_func == 2’b01)

aluout = a - b;

else if (alu_func == 2’b10)

aluout = a & b;

else // alu_func == 2’b11

aluout = a | b;

if (a == b) // This if with no else will generate

begin // a latch for x and ot. This is so they

x = 1; // will hold their old value if (a != b).

ot = 4’b1111;

end

1

1

1

1

1

1

0

1

1

0

1

1

0

Center for Systems and Software Engineering 2013

8

EBS4 – case statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

case (expression)

case_choice1:

begin

... statements ...

end

case_choice2:

begin

... statements ...

end

... more case choices blocks ...

default:

begin

... statements ...

end

endcase

case (state)

state0: begin

if (start) nxt_st = state1;

else nxt_st = state0;

end

state1: begin

nxt_st = state2;

end

state2: begin

if (skip3) nxt_st = state0;

else nxt_st = state3;

end

state3: begin

if (wait3) nxt_st = state3;

else nxt_st = state0;

end

default: nxt_st = state0;

endcase

1

1

2

1

0

1

1

0

1

1

1

0

1

1

1

0

1

0

EBS5 – while statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

while (expression)

begin

... statements ...

end

while (!overflow) begin

@(posedge clk);

a = a + 1;

end

1

1

1

0

EBS6 – repeat statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

always @(event_1 or event_2 or ...)

begin

... statements ...

end

always @(posedge c)

begin

a <= b;

b <= a;

end

1

0

1

1

0

EBS7 – for statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

always @(event_1 or event_2 or ...)

begin

... statements ...

end

always @(posedge c)

begin

a <= b;

b <= a;

end

1

0

1

1

0

Center for Systems and Software Engineering 2013

9

EBS8 – forever statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

always @(event_1 or event_2 or ...)

begin

... statements ...

end

always @(posedge c)

begin

a <= b;

b <= a;

end

1

0

1

1

0

DECLARATION OR DATA LINES

DDS1 – wire and supply statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

wire [msb:lsb] wire_variable_list;

supply0 logic_0_wires;

supply1 logic_1_wires;

wire c; // simple wire

wand d;

assign d = a; // value of d is the logical AND of

assign d = b; // a and b

wire [9:0] A; // a cable (vector) of 10 wires.

supply0 my_gnd; // equivalent to a wire assigned 0

supply1 a, b;

1

1

1

1

1

1

1

DDS2 – reg statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

reg [msb:lsb] reg_variable_list;

reg a; // single 1-bit register variable

reg [7:0] tom; // an 8-bit vector; a bank of 8

registers.

reg [5:0] b, c; // two 6-bit variables

1

1

1

DDS3 – input/output statements

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

component <component_name> [is]

 [generic (variable_declarations>) ;]

 port (

<input_and_output_variable_declarations>

) ;

 end component <component_name> ;

component reg32 is

 generic (setup_time : time := 50 ps;

 pulse_width : time := 100 ps);

 port (input : in std_logic_vector(31 downto 0);

 output: out std_logic_vector(31 downto 0);

 Load : in std_logic_vector;

 Clk : in std_logic_vector);

 end component reg32;

0

0

1

0

0

0

1

0

Center for Systems and Software Engineering 2013

10

DDS4 – simple data types statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

component <component_name> [is]

 [generic (variable_declarations>) ;]

 port (

<input_and_output_variable_declarations>

) ;

 end component <component_name> ;

component reg32 is

 generic (setup_time : time := 50 ps;

 pulse_width : time := 100 ps);

 port (input : in std_logic_vector(31 downto 0);

 output: out std_logic_vector(31 downto 0);

 Load : in std_logic_vector;

 Clk : in std_logic_vector);

 end component reg32;

0

0

1

0

0

0

1

0

DDS5 – module statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

component <component_name> [is]

 [generic (variable_declarations>) ;]

 port (

<input_and_output_variable_declarations>

) ;

 end component <component_name> ;

component reg32 is

 generic (setup_time : time := 50 ps;

 pulse_width : time := 100 ps);

 port (input : in std_logic_vector(31 downto 0);

 output: out std_logic_vector(31 downto 0);

 Load : in std_logic_vector;

 Clk : in std_logic_vector);

 end component reg32;

0

0

1

0

0

0

1

0

DDS6 – function statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

component <component_name> [is]

 [generic (variable_declarations>) ;]

 port (

<input_and_output_variable_declarations>

) ;

 end component <component_name> ;

component reg32 is

 generic (setup_time : time := 50 ps;

 pulse_width : time := 100 ps);

 port (input : in std_logic_vector(31 downto 0);

 output: out std_logic_vector(31 downto 0);

 Load : in std_logic_vector;

 Clk : in std_logic_vector);

 end component reg32;

0

0

1

0

0

0

1

0

DDS7 – task statement

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

component <component_name> [is]

 [generic (variable_declarations>) ;]

 port (

<input_and_output_variable_declarations>

) ;

 end component <component_name> ;

component reg32 is

 generic (setup_time : time := 50 ps;

 pulse_width : time := 100 ps);

 port (input : in std_logic_vector(31 downto 0);

 output: out std_logic_vector(31 downto 0);

 Load : in std_logic_vector;

 Clk : in std_logic_vector);

 end component reg32;

0

0

1

0

0

0

1

0

Center for Systems and Software Engineering 2013

11

COMPILER DIRECTIVES

CDL1 – directive types

GENERAL EXAMPLE SPECIFIC EXAMPLE SLOC COUNT

`timescale time_unit / time_precision

`define macro_name text_string

`include file_name

`ifdef macro

 …statements…

`else

 …statements…

`endif

`timescale 1 ns /100 ps

// time unit = 1ns; precision = 1/10ns;

`define add_lsb a[7:0] + b[7:0]

`include “dclr.v”

`ifdef FIRST

 $display("First code is compiled");

`else

 `ifdef SECOND

 $display("Second code is compiled");

 `else

 $display("Default code is compiled");

 `endif

`endif

1

0

1

1

1

1

1

1

1

1

1

1

1

