UCC Cyclomatic Complexity Standard ¢ Center for Systems and Software Engineering ¢ University of Southern California

Cyclomatic Complexity

UCCv.2014.08

Copyright (C) 1998 - 2014
University of Southern California

Center for Systems and Software Engineering

UCC Cyclomatic Complexity Standard ¢ Center for Systems and Software Engineering 4 University of Southern California

Version History

Date Author Version Changes
08/12/2014 Anandi Hira 2014.08 Explanation of the Cyclomatic Complexity
output

UCC Cyclomatic Complexity Standard ¢ Center for Systems and Software Engineering ¢ University of Southern California

Table of Contents

i [0} g Te [FTot i oY N O T TSRO PRSP PO PPRPPRTO
2 McCabe Cyclomatic COMPIEXITY ..uuiiiiiee ittt e e e e e e e e et er e e e e eaeeeeessassbrrasseeaaaaeeeeaas
3 Cyclomatic Complexity Rings and Implementation..........ccccciiiiiiiiee e
4 RISK EVAIUALION ...ttt ettt ettt et e b e e s eab e e e bb e e snbe e s abbeesabbeesnreeebeeesanreenn
D REFEIENCES .ottt ettt s bt e st e e sttt e s b e e e s bt e e e be e e s be e e e be e e s beeesbbeesbeeesanreenn

UCC Cyclomatic Complexity Standard ¢ Center for Systems and Software Engineering ¢ University of Southern California

1 Introduction

Thomas McCabe developed a measure of program complexity in 1976, referred to as Cyclomatic
Complexity. Cyclomatic Complexity counts the number of linearly independent paths within a program.
Effort required in code construction is affected by complexity, hence, a valuable metric to incorporate in
the Unified Code Count (UCC) tool. Additionally, developers are able to determine the number of
independent path executions and baseline unit tests required for validation. Being aware of the
Cyclomatic Complexity, developers find that they can assure that all paths have been tested at least
once. The details of how the McCabe Cyclomatic Complexity metric is measured in UCC is described with
examples. This standard applies across all of the languages for which Cyclomatic Complexity has been

implemented.

2 McCabe Cyclomatic Complexity

As mentioned previously, Cyclomatic Complexity is a count of the number of linearly independent paths
within a program. For instance a simple linear program that has no decision points has a complexity of 1,
whereas if it contained an IF statement, then there are two separate paths through the code and so it

would have a complexity of 2.

An easy way to calculate Cyclomatic Complexity is to take the number of decisions being made in the
code, and adding 1. The following keywords usually identify decision points within code, the specific

word and syntax depending on the programming language:

* |IF

* ELSEIF

* REPEAT-UNTIL
* WHILE

* FOR

e CASE

* Database exception clause (except for when successful)

3 Cyclomatic Complexity Rings and Implementation

Information Engineering Technology did a study of the Cyclomatic Complexity for a specific domain of
projects, and has described Cyclomatic Complexity in 4 “rings” CC1 — CC4. This categorization of
Cyclomatic Complexity has allowed for the implementation to be broken down.

1. CC1: The original McCabe method treated each branch as a count.
2. CC2: Avariation of the original method that counts Boolean operators within the decision point

a. For example, the statement

UCC Cyclomatic Complexity Standard ¢ Center for Systems and Software Engineering ¢ University of Southern California

IF a==1 AND b==1

Would receive a Cyclomatic Complexity value 1 for CC1, but received a value of 2 in

compliance with CC2.

3. CC3:Increments Cyclomatic Complexity for each CASE OF clause, and ignores the individual

CASE clauses.

4. CC4: Counts distinct IF/ELSE IF statements. Hence, if an IF statement is present multiple times

within a function or file, it is only counted once..

The following table summarizes the differences between the four Cyclomatic Complexity rings:

Statement Type cc1 cc2 CC3 Cca

IF/ELSE IF +1 +1 for IF/ELSE IF +1 +1 for each
and +1 for each distinct IF/ELSE IF
AND/OR clasue clause

REPEAT-UNTIL +1 +1 +1 +1

WHILE +1 +1 +1 +1

FOR +1 +1 +1 +1

CASE OF 0 0 +1 0

CASE +1 +1 0 +1

Database +1 +1 +1 +1

exception clause

The Cyclomatic Complexity measurement for CC1, CC2, and CC3 are reported as separate columns in the

UCC Cylcomatic Complexity Output report “outfile_cyclomatic_cplx.csv”. The results are reported by file,

as well as function/module. CC4 is the only ring of complexity that has not yet been implemented within

UCC.

4 Risk Evaluation

SEl has identified a risk evaluation or level with Cyclomatic Complexity ranges — this risk evaluation is

provided in the UCC Cylcomatic Complexity Output report “outfile_cyclomatic_cplx.csv”:

Cyclomatic Complexity | Risk Evaluation

1-10 A simple program, without much risk
11-20 More complex, moderate risk
21-50 Complex, high risk program

>50 Untestable program (very high risk)

UCC Cyclomatic Complexity Standard ¢ Center for Systems and Software Engineering ¢ University of Southern California

5 References

Complexity Metrics. Aivosto Oy. http://www.aivosto.com/project/help/pm-complexity.html. Accessed
4/23/2012.

