% ECEF2GNO - convert earth-centered earth-fixed (ECEF) % cartesian coordinates to latitude, longitude, % and altitude % % USAGE: % [lat,lon,alt] = ecef2gno(x,y,z) % % lat = geodetic latitude (radians) % lon = longitude (radians) % alt = height above WGS84 ellipsoid (m) % x = ECEF X-coordinate (m) % y = ECEF Y-coordinate (m) % z = ECEF Z-coordinate (m) % % Notes: (1) This function assumes the WGS84 model. % (2) Latitude is customary geodetic (not geocentric). % (3) Inputs may be scalars, vectors, or matrices of the same % size and shape. Outputs will have that same size and shape. % (4) Tested but no warranty; use at your own risk. % (5) Michael Kleder, April 2006 function [lat,lon,alt] = ecef2gno(x,y,z) % WGS84 ellipsoid constants: a = 6378137; e = 8.1819190842622e-2; % calculations: b = sqrt(a^2*(1-e^2)); ep = sqrt((a^2-b^2)/b^2); p = sqrt(x.^2+y.^2); th = atan2(a*z,b*p); lon = atan2(y,x); lat = atan2((z+ep^2.*b.*sin(th).^3),(p-e^2.*a.*cos(th).^3)); N = a./sqrt(1-e^2.*sin(lat).^2); alt = p./cos(lat)-N; % return lon in range [0,2*pi) lon = mod(lon,2*pi); % correct for numerical instability in altitude near exact poles: % (after this correction, error is about 2 millimeters, which is about % the same as the numerical precision of the overall function) lat=lat*180/pi; lon=lon*180/pi; k=abs(x)<1 & abs(y)<1; alt(k) = abs(z(k))-b; return