SXXXXXXX_ScenarioSimulator/scenario_simulator/utils/radar_math.py
2025-09-30 09:12:37 +02:00

85 lines
2.7 KiB
Python

"""
Utility functions for radar-related mathematical calculations.
"""
import numpy as np
from scipy.constants import c
def calculate_max_unambiguous_range(prf: float) -> float:
"""
Calculates the maximum unambiguous range for a given PRF.
Args:
prf: Pulse Repetition Frequency in Hertz (Hz).
Returns:
The maximum unambiguous range in meters (m).
"""
if prf <= 0:
return float('inf')
return c / (2 * prf)
def calculate_max_unambiguous_velocity(carrier_frequency: float, prf: float) -> float:
"""
Calculates the maximum unambiguous velocity for a given radar configuration.
Args:
carrier_frequency: Carrier frequency in Hertz (Hz).
prf: Pulse Repetition Frequency in Hertz (Hz).
Returns:
The maximum unambiguous (Nyquist) velocity in m/s.
"""
if carrier_frequency <= 0:
return float('inf')
wavelength = c / carrier_frequency
return (prf * wavelength) / 4
def calculate_dwell_time(beamwidth_deg: float, scan_speed_deg_s: float) -> float:
"""
Calculates the time a target spends within the antenna's beam.
Args:
beamwidth_deg: The 3dB beamwidth of the antenna in degrees.
scan_speed_deg_s: The angular scan speed of the antenna in degrees/sec.
Returns:
The dwell time in seconds (s).
"""
if scan_speed_deg_s <= 0:
return float('inf') # Staring mode
return beamwidth_deg / scan_speed_deg_s
def calculate_pulses_on_target(dwell_time_s: float, prf: float) -> int:
"""
Calculates the number of pulses that hit a target during the dwell time.
Args:
dwell_time_s: The dwell time in seconds.
prf: The Pulse Repetition Frequency in Hz.
Returns:
The number of pulses hitting the target.
"""
if np.isinf(dwell_time_s):
return -1 # Represents continuous illumination (staring)
return int(dwell_time_s * prf)
def calculate_gaussian_gain(angle_off_boresight_deg: float, beamwidth_deg: float) -> float:
"""
Calculates antenna gain based on a Gaussian beam shape model.
This models the two-way (transmit and receive) gain pattern.
Args:
angle_off_boresight_deg: Angle between target and antenna centerline (degrees).
beamwidth_deg: The 3dB one-way beamwidth of the antenna in degrees.
Returns:
A dimensionless gain factor (from 0.0 to 1.0).
"""
# The standard deviation (sigma) of the Gaussian beam is related to the 3dB beamwidth
sigma = beamwidth_deg / (2 * np.sqrt(2 * np.log(2)))
# We use angle^2 / (2 * sigma^2) for the one-way gain pattern.
# This provides a more realistic falloff than a squared (two-way) model.
gain = np.exp(-(angle_off_boresight_deg**2) / (2 * sigma**2))
return gain