SXXXXXXX_ScenarioSimulator/scenario_simulator/gui/gui.py
2025-09-30 09:12:37 +02:00

802 lines
43 KiB
Python

"""
Main GUI module for the Radar Scenario Simulator (Tkinter version).
This file contains the implementation of the main application window using Tkinter,
organized with a Notebook widget for clarity and featuring proactive guidance
and interactive antenna simulation.
"""
import tkinter as tk
from tkinter import ttk, messagebox, simpledialog
import numpy as np
from scipy.constants import c
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
import matplotlib.animation as animation
# Import core simulation engine and utility functions
from ..core.simulation_engine import RadarConfig, AntennaConfig, ScanConfig, Target, generate_iq_data
from ..utils import radar_math, config_manager
# --- Helper Dialog for Adding/Editing Targets ---
class AddTargetDialog(tk.Toplevel):
"""Dialog window for adding or editing target parameters."""
def __init__(self, parent, target_data=None):
super().__init__(parent)
self.title("Add New Target" if target_data is None else "Edit Target")
self.transient(parent) # Set to be on top of the parent window
self.grab_set() # Disable events in other windows
self.result = None
frame = ttk.Frame(self, padding="10")
frame.grid(row=0, column=0, sticky=(tk.W, tk.E, tk.N, tk.S))
# Initialize vars with default or existing data
self.vars = {
"pos_x": tk.DoubleVar(value=target_data["pos_x"] if target_data else 5000.0),
"pos_y": tk.DoubleVar(value=target_data["pos_y"] if target_data else 0.0),
"pos_z": tk.DoubleVar(value=target_data["pos_z"] if target_data else 0.0),
"vel_x": tk.DoubleVar(value=target_data["vel_x"] if target_data else -150.0),
"vel_y": tk.DoubleVar(value=target_data["vel_y"] if target_data else 0.0),
"vel_z": tk.DoubleVar(value=target_data["vel_z"] if target_data else 0.0),
"rcs": tk.DoubleVar(value=target_data["rcs"] if target_data else 1.0)
}
# Create input fields
labels = ["Initial Position X (m):", "Initial Position Y (m):", "Initial Position Z (m):",
"Velocity X (m/s):", "Velocity Y (m/s):", "Velocity Z (m/s):", "RCS (m^2):"]
keys = ["pos_x", "pos_y", "pos_z", "vel_x", "vel_y", "vel_z", "rcs"]
for i, (label_text, key) in enumerate(zip(labels, keys)):
ttk.Label(frame, text=label_text).grid(row=i, column=0, sticky=tk.W, pady=2)
spinbox = ttk.Spinbox(frame, from_=-1e6, to=1e6, textvariable=self.vars[key])
spinbox.grid(row=i, column=1, sticky=(tk.W, tk.E), pady=2)
if key == "rcs": # RCS should not be negative
spinbox.config(from_=0.01)
# Buttons
button_frame = ttk.Frame(frame)
button_frame.grid(row=len(labels), column=0, columnspan=2, pady=10)
ttk.Button(button_frame, text="OK", command=self.on_ok).pack(side=tk.LEFT, padx=5)
ttk.Button(button_frame, text="Cancel", command=self.destroy).pack(side=tk.LEFT, padx=5)
def on_ok(self):
"""Called when the OK button is pressed."""
self.result = {key: var.get() for key, var in self.vars.items()}
self.destroy()
def show(self):
"""Displays the dialog and waits for it to close."""
self.wait_window()
return self.result
# --- Main Application Class ---
class App(tk.Tk):
"""Main application window for the Radar Scenario Simulator."""
def __init__(self):
super().__init__()
self.title("Radar Scenario Simulator")
# Start fullscreen
self.attributes('-fullscreen', True)
self.bind("<Escape>", lambda event: self.attributes('-fullscreen', False))
# --- Paned Window for Layout ---
paned_window = ttk.PanedWindow(self, orient=tk.HORIZONTAL)
paned_window.pack(fill=tk.BOTH, expand=True)
# Left Frame: Controls
left_frame = ttk.Frame(paned_window, width=550) # Increased width
paned_window.add(left_frame, weight=1)
# Right Frame: Plots
right_frame = ttk.Frame(paned_window)
paned_window.add(right_frame, weight=3)
# --- Tkinter Variables for UI Elements ---
self.vars = {
# Radar Config
"carrier_frequency": tk.DoubleVar(value=9.5e9),
"prf": tk.DoubleVar(value=2000.0),
"duty_cycle": tk.DoubleVar(value=10.0), # in percent
"sample_rate": tk.DoubleVar(value=5e6),
# Antenna Config
"beamwidth_az_deg": tk.DoubleVar(value=3.0),
"beamwidth_el_deg": tk.DoubleVar(value=3.0), # For future use
# Scan Config
"scan_mode": tk.StringVar(value='staring'),
"min_az_deg": tk.DoubleVar(value=-30.0),
"max_az_deg": tk.DoubleVar(value=30.0),
"scan_speed_deg_s": tk.DoubleVar(value=20.0),
# Simulation & Plotting Control
"num_pulses_cpi": tk.IntVar(value=256), # Number of pulses per Coherent Processing Interval
"simulation_duration_s": tk.DoubleVar(value=1.0), # Total duration of the simulation in seconds
"min_db": tk.DoubleVar(value=-60.0),
"max_db": tk.DoubleVar(value=0.0),
"auto_scale": tk.BooleanVar(value=True),
# Derived Parameters
"pulse_width_text": tk.StringVar(),
"listening_time_text": tk.StringVar(),
"max_range_text": tk.StringVar(),
"max_velocity_text": tk.StringVar(),
"dwell_time_text": tk.StringVar(),
"pulses_on_target_text": tk.StringVar()
}
# Load profiles and set up combobox
self.profiles = config_manager.load_profiles()
self.selected_profile = tk.StringVar()
# --- Traces for Real-time Parameter Updates ---
# Any change in these variables triggers an update of derived parameters
self.vars["prf"].trace_add("write", self.update_derived_parameters)
self.vars["carrier_frequency"].trace_add("write", self.update_derived_parameters)
self.vars["duty_cycle"].trace_add("write", self.update_derived_parameters)
self.vars["beamwidth_az_deg"].trace_add("write", self.update_derived_parameters)
self.vars["scan_mode"].trace_add("write", self.update_derived_parameters)
self.vars["scan_speed_deg_s"].trace_add("write", self.update_derived_parameters)
# --- Notebook (Tabs) for Left Frame ---
notebook = ttk.Notebook(left_frame)
notebook.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
self.config_tab = ttk.Frame(notebook)
self.target_tab = ttk.Frame(notebook)
self.scenario_tab = ttk.Frame(notebook)
notebook.add(self.config_tab, text="Configuration") # Renamed tab
notebook.add(self.target_tab, text="Target")
notebook.add(self.scenario_tab, text="Scenario")
self._populate_config_tab(self.config_tab)
self._populate_target_tab(self.target_tab)
self._populate_scenario_tab(self.scenario_tab)
# --- Plotting Area for Right Frame ---
self.figure = Figure(figsize=(10, 8), dpi=100) # Larger figure
self.figure.set_facecolor('#3a3a3a') # Dark background for plots
self.canvas = FigureCanvasTkAgg(self.figure, master=right_frame)
self.canvas_widget = self.canvas.get_tk_widget()
self.canvas_widget.pack(fill=tk.BOTH, expand=True)
self.ani = None # For animation object
self.current_simulation_generator = None
self.targets_in_simulation = [] # Actual Target objects for simulation
self.toggle_amplitude_controls() # Set initial state of amplitude controls
self.update_derived_parameters() # Initial call to update all calculated values
# --- Widget Creation Helper ---
def _create_labeled_spinbox(self, parent, text, var, from_, to, increment=1.0, is_db=False, scientific=False, command=None):
"""Helper to create a labeled Spinbox."""
frame = ttk.Frame(parent)
frame.pack(fill=tk.X, pady=2)
ttk.Label(frame, text=text, width=25).pack(side=tk.LEFT)
if scientific:
spinbox = ttk.Spinbox(frame, from_=from_, to=to, increment=increment, textvariable=var, format="%.2e", command=command)
else:
spinbox = ttk.Spinbox(frame, from_=from_, to=to, increment=increment, textvariable=var, command=command)
spinbox.pack(side=tk.LEFT, fill=tk.X, expand=True)
if is_db:
if "min" in text.lower(): self.min_db_spinbox = spinbox
else: self.max_db_spinbox = spinbox
return spinbox
# --- Tab Population Methods ---
def _populate_config_tab(self, tab):
# Profile Management
profile_group = ttk.LabelFrame(tab, text="Radar Profiles", padding=10)
profile_group.pack(fill=tk.X, padx=5, pady=5)
profile_frame = ttk.Frame(profile_group)
profile_frame.pack(fill=tk.X, pady=2)
ttk.Label(profile_frame, text="Profile:").pack(side=tk.LEFT, padx=(0, 5))
self.profile_combobox = ttk.Combobox(profile_frame, textvariable=self.selected_profile, state='readonly')
self.profile_combobox.pack(side=tk.LEFT, fill=tk.X, expand=True)
self.profile_combobox.bind('<<ComboboxSelected>>', self.on_profile_select)
btn_frame = ttk.Frame(profile_group)
btn_frame.pack(fill=tk.X, pady=5)
ttk.Button(btn_frame, text="Save Current...", command=self.save_profile).pack(side=tk.LEFT, padx=5)
ttk.Button(btn_frame, text="Delete Selected", command=self.delete_profile).pack(side=tk.LEFT, padx=5)
self.refresh_profile_list()
# Radar Configuration
radar_group = ttk.LabelFrame(tab, text="Radar Configuration", padding=10)
radar_group.pack(fill=tk.X, padx=5, pady=5)
self._create_labeled_spinbox(radar_group, "Carrier Frequency (Hz):", self.vars["carrier_frequency"], 1e6, 100e9, scientific=True)
self._create_labeled_spinbox(radar_group, "PRF (Hz):", self.vars["prf"], 1, 100000)
self._create_labeled_spinbox(radar_group, "Duty Cycle (%):", self.vars["duty_cycle"], 0.01, 99.99, increment=0.1)
self._create_labeled_spinbox(radar_group, "Sample Rate (Hz):", self.vars["sample_rate"], 1e3, 100e6, scientific=True)
# Antenna Configuration
antenna_group = ttk.LabelFrame(tab, text="Antenna Configuration", padding=10)
antenna_group.pack(fill=tk.X, padx=5, pady=5)
self._create_labeled_spinbox(antenna_group, "Azimuth Beamwidth (deg):", self.vars["beamwidth_az_deg"], 0.1, 90.0, increment=0.1)
# self._create_labeled_spinbox(antenna_group, "Elevation Beamwidth (deg):", self.vars["beamwidth_el_deg"], 0.1, 90.0, increment=0.1) # Future use
# Scan Strategy
scan_group = ttk.LabelFrame(tab, text="Scan Strategy", padding=10)
scan_group.pack(fill=tk.X, padx=5, pady=5)
mode_frame = ttk.Frame(scan_group)
mode_frame.pack(fill=tk.X, pady=2)
ttk.Label(mode_frame, text="Scan Mode:", width=25).pack(side=tk.LEFT)
ttk.Radiobutton(mode_frame, text="Staring", variable=self.vars["scan_mode"], value="staring", command=self.update_scan_mode_controls).pack(side=tk.LEFT)
ttk.Radiobutton(mode_frame, text="Sector", variable=self.vars["scan_mode"], value="sector", command=self.update_scan_mode_controls).pack(side=tk.LEFT)
# ttk.Radiobutton(mode_frame, text="Circular", variable=self.vars["scan_mode"], value="circular", command=self.update_scan_mode_controls).pack(side=tk.LEFT) # Future use
self.min_az_spinbox = self._create_labeled_spinbox(scan_group, "Min Azimuth (deg):", self.vars["min_az_deg"], -180, 180, increment=1.0)
self.max_az_spinbox = self._create_labeled_spinbox(scan_group, "Max Azimuth (deg):", self.vars["max_az_deg"], -180, 180, increment=1.0)
self.scan_speed_spinbox = self._create_labeled_spinbox(scan_group, "Scan Speed (deg/s):", self.vars["scan_speed_deg_s"], 0.1, 1000.0, increment=1.0)
self.update_scan_mode_controls() # Set initial state of scan controls
# Derived & Calculated Values
derived_group = ttk.LabelFrame(tab, text="Derived & Calculated Values", padding=10)
derived_group.pack(fill=tk.X, padx=5, pady=5)
ttk.Label(derived_group, textvariable=self.vars["pulse_width_text"]).pack(anchor=tk.W)
ttk.Label(derived_group, textvariable=self.vars["listening_time_text"]).pack(anchor=tk.W)
ttk.Separator(derived_group, orient=tk.HORIZONTAL).pack(fill=tk.X, pady=5)
self.max_range_label = ttk.Label(derived_group, textvariable=self.vars["max_range_text"])
self.max_range_label.pack(anchor=tk.W)
self.max_velocity_label = ttk.Label(derived_group, textvariable=self.vars["max_velocity_text"])
self.max_velocity_label.pack(anchor=tk.W)
ttk.Separator(derived_group, orient=tk.HORIZONTAL).pack(fill=tk.X, pady=5)
ttk.Label(derived_group, textvariable=self.vars["dwell_time_text"]).pack(anchor=tk.W)
ttk.Label(derived_group, textvariable=self.vars["pulses_on_target_text"]).pack(anchor=tk.W)
def _populate_target_tab(self, tab):
target_group = ttk.LabelFrame(tab, text="Target Management", padding=10)
target_group.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
self._create_target_table(target_group)
def _populate_scenario_tab(self, tab):
sim_group = ttk.LabelFrame(tab, text="Simulation & Plotting Control", padding=10)
sim_group.pack(fill=tk.X, padx=5, pady=5)
self._create_sim_controls(sim_group)
self.analysis_frame = ttk.LabelFrame(tab, text="Simulation Analysis & Warnings", padding=10)
self.analysis_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
self.analysis_text = tk.Text(self.analysis_frame, wrap=tk.WORD, height=10, state=tk.DISABLED, font=('TkDefaultFont', 10))
self.analysis_text.pack(fill=tk.BOTH, expand=True, padx=5, pady=5)
self.analysis_text_scroll = ttk.Scrollbar(self.analysis_frame, command=self.analysis_text.yview)
self.analysis_text_scroll.pack(side=tk.RIGHT, fill=tk.Y)
self.analysis_text.config(yscrollcommand=self.analysis_text_scroll.set)
def _create_target_table(self, parent):
frame = ttk.Frame(parent)
frame.pack(fill=tk.BOTH, expand=True)
cols = ("Pos X", "Pos Y", "Pos Z", "Vel X", "Vel Y", "Vel Z", "RCS")
self.target_table = ttk.Treeview(frame, columns=cols, show="headings")
self.target_table.column("#0", width=0, stretch=tk.NO) # Hide default first column
for col in cols:
self.target_table.heading(col, text=col)
self.target_table.column(col, width=60, anchor=tk.CENTER) # Smaller width
self.target_table.pack(side=tk.LEFT, fill=tk.BOTH, expand=True)
# Add scrollbar
scrollbar = ttk.Scrollbar(frame, orient="vertical", command=self.target_table.yview)
scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
self.target_table.configure(yscrollcommand=scrollbar.set)
# Bind double-click for editing
self.target_table.bind("<Double-1>", self.on_target_double_click)
btn_frame = ttk.Frame(parent)
btn_frame.pack(fill=tk.X, pady=5)
ttk.Button(btn_frame, text="Add Target", command=self.open_add_target_dialog).pack(side=tk.LEFT, padx=5)
ttk.Button(btn_frame, text="Remove Selected", command=self.remove_selected_target).pack(side=tk.LEFT, padx=5)
def _create_sim_controls(self, parent):
self._create_labeled_spinbox(parent, "Pulses per CPI:", self.vars["num_pulses_cpi"], 1, 8192)
self._create_labeled_spinbox(parent, "Simulation Duration (s):", self.vars["simulation_duration_s"], 0.1, 300.0, increment=0.1)
auto_scale_check = ttk.Checkbutton(parent, text="Auto-Scale Amplitude", variable=self.vars["auto_scale"], command=self.toggle_amplitude_controls)
auto_scale_check.pack(fill=tk.X, pady=5)
self._create_labeled_spinbox(parent, "Min Display Amplitude (dB):", self.vars["min_db"], -200, 100, is_db=True)
self._create_labeled_spinbox(parent, "Max Display Amplitude (dB):", self.vars["max_db"], -200, 100, is_db=True)
self.generate_button = ttk.Button(parent, text="Start Simulation", command=self.start_simulation_animation)
self.generate_button.pack(pady=5)
self.stop_button = ttk.Button(parent, text="Stop Simulation", command=self.stop_simulation_animation, state=tk.DISABLED)
self.stop_button.pack(pady=5)
# --- UI Logic / Callbacks ---
def toggle_amplitude_controls(self):
"""Enables/disables min/max amplitude spinboxes based on auto-scale checkbox."""
state = tk.DISABLED if self.vars["auto_scale"].get() else tk.NORMAL
self.min_db_spinbox.config(state=state)
self.max_db_spinbox.config(state=state)
def update_scan_mode_controls(self, *args):
"""Enables/disables scan mode controls based on selected mode."""
mode = self.vars["scan_mode"].get()
if mode == 'staring':
state = tk.DISABLED
self.vars["scan_speed_deg_s"].set(0.0001) # Set to a very small non-zero to avoid division by zero, but functionally 'staring'
else: # sector, circular
state = tk.NORMAL
if self.vars["scan_speed_deg_s"].get() <= 0.0001:
self.vars["scan_speed_deg_s"].set(20.0) # Reset to default if it was 0
self.min_az_spinbox.config(state=state)
self.max_az_spinbox.config(state=state)
self.scan_speed_spinbox.config(state=state)
self.update_derived_parameters() # Recalculate based on new scan mode
def update_derived_parameters(self, *args):
"""Calculates and displays derived radar parameters in real-time."""
try:
prf = self.vars["prf"].get()
carrier_freq = self.vars["carrier_frequency"].get()
duty_cycle = self.vars["duty_cycle"].get()
beamwidth = self.vars["beamwidth_az_deg"].get()
scan_mode = self.vars["scan_mode"].get()
scan_speed = self.vars["scan_speed_deg_s"].get()
# Pulse and Listening Time
pri = 1.0 / prf
pulse_width = pri * (duty_cycle / 100.0)
listening_time = pri # Total time to listen for echoes (full PRI)
self.vars["pulse_width_text"].set(f"Pulse Width: {pulse_width * 1e6:,.2f} µs")
self.vars["listening_time_text"].set(f"Listening Window: {listening_time * 1e6:,.2f} µs (Max Range Time)")
# Max Unambiguous Range & Velocity
max_range = radar_math.calculate_max_unambiguous_range(prf)
max_vel = radar_math.calculate_max_unambiguous_velocity(carrier_freq, prf)
self.vars["max_range_text"].set(f"Max Unambiguous Range: {max_range:,.0f} m")
self.vars["max_velocity_text"].set(f"Max Unambiguous Velocity: \u00b1{max_vel:,.1f} m/s")
# Dwell Time & Pulses on Target (for scanning modes)
if scan_mode == 'staring':
self.vars["dwell_time_text"].set("Dwell Time: N/A (Staring)")
self.vars["pulses_on_target_text"].set("Pulses on Target: N/A (Staring)")
else:
dwell_time = radar_math.calculate_dwell_time(beamwidth, scan_speed)
pulses_on_target = radar_math.calculate_pulses_on_target(dwell_time, prf)
self.vars["dwell_time_text"].set(f"Dwell Time: {dwell_time * 1e3:,.2f} ms")
self.vars["pulses_on_target_text"].set(f"Pulses on Target: {pulses_on_target:,}")
self.check_target_warnings()
except (tk.TclError, ValueError, ZeroDivisionError):
# Ignore errors during startup or when entry is invalid
self.vars["pulse_width_text"].set("Pulse Width: N/A")
self.vars["listening_time_text"].set("Listening Window: N/A")
self.vars["max_range_text"].set("Max Unambiguous Range: N/A")
self.vars["max_velocity_text"].set("Max Unambiguous Velocity: N/A")
self.vars["dwell_time_text"].set("Dwell Time: N/A")
self.vars["pulses_on_target_text"].set("Pulses on Target: N/A")
pass
def check_target_warnings(self):
"""Highlights derived parameters if targets violate unambiguous limits."""
# Guard against calls before UI is fully initialized
if not hasattr(self, 'target_table') or not hasattr(self, 'max_range_label'):
return
try:
prf = self.vars["prf"].get()
carrier_freq = self.vars["carrier_frequency"].get()
max_range = radar_math.calculate_max_unambiguous_range(prf)
max_vel = radar_math.calculate_max_unambiguous_velocity(carrier_freq, prf)
range_warning, vel_warning = False, False
for item in self.target_table.get_children():
values = [float(v) for v in self.target_table.item(item)['values']]
target_initial_range = np.linalg.norm(values[0:3])
target_radial_vel = np.dot(values[3:6], values[0:3] / target_initial_range) if target_initial_range > 0 else 0
if target_initial_range > max_range: range_warning = True
if abs(target_radial_vel) > max_vel: vel_warning = True
self.max_range_label.config(foreground='orange' if range_warning else 'black')
self.max_velocity_label.config(foreground='orange' if vel_warning else 'black')
except (tk.TclError, ValueError, ZeroDivisionError):
# On error (e.g., invalid data in entry), reset colors if labels exist
if hasattr(self, 'max_range_label'):
self.max_range_label.config(foreground='black')
if hasattr(self, 'max_velocity_label'):
self.max_velocity_label.config(foreground='black')
pass
def open_add_target_dialog(self):
"""Opens dialog to add a new target."""
dialog = AddTargetDialog(self)
result = dialog.show()
if result:
self.add_target_to_table(result)
def on_target_double_click(self, event):
"""Handles double-click on target table to edit a target."""
selected_item = self.target_table.selection()
if selected_item:
item_data = self.target_table.item(selected_item[0])['values']
target_data = {
"pos_x": float(item_data[0]), "pos_y": float(item_data[1]), "pos_z": float(item_data[2]),
"vel_x": float(item_data[3]), "vel_y": float(item_data[4]), "vel_z": float(item_data[5]),
"rcs": float(item_data[6])
}
dialog = AddTargetDialog(self, target_data=target_data)
result = dialog.show()
if result:
# Update the existing item
self.target_table.item(selected_item[0], values=[f"{v:.2f}" for v in result.values()])
self.check_target_warnings()
def add_target_to_table(self, data):
"""Adds a target to the Treeview table."""
self.target_table.insert("", tk.END, values=[f"{v:.2f}" for v in data.values()])
self.check_target_warnings()
def remove_selected_target(self):
"""Removes selected targets from the Treeview table."""
for i in self.target_table.selection(): self.target_table.delete(i)
self.check_target_warnings()
# --- Profile Management ---
def on_profile_select(self, event=None):
"""Loads selected profile parameters into the GUI."""
profile_name = self.selected_profile.get()
if profile_name in self.profiles:
profile_data = self.profiles[profile_name]
# Radar Config
self.vars["carrier_frequency"].set(profile_data.get("carrier_frequency", 9.5e9))
self.vars["prf"].set(profile_data.get("prf", 2000.0))
self.vars["duty_cycle"].set(profile_data.get("duty_cycle", 10.0))
self.vars["sample_rate"].set(profile_data.get("sample_rate", 5e6))
# Antenna Config
self.vars["beamwidth_az_deg"].set(profile_data.get("beamwidth_az_deg", 3.0))
self.vars["beamwidth_el_deg"].set(profile_data.get("beamwidth_el_deg", 3.0))
# Scan Config
self.vars["scan_mode"].set(profile_data.get("scan_mode", 'staring'))
self.vars["min_az_deg"].set(profile_data.get("min_az_deg", -30.0))
self.vars["max_az_deg"].set(profile_data.get("max_az_deg", 30.0))
self.vars["scan_speed_deg_s"].set(profile_data.get("scan_speed_deg_s", 20.0))
self.update_scan_mode_controls() # Ensure correct state for scan controls
messagebox.showinfo("Profile Loaded", f"Profile '{profile_name}' has been loaded.", parent=self)
def save_profile(self):
"""Saves current radar configuration as a new profile."""
profile_name = simpledialog.askstring("Save Profile", "Enter a name for this profile:", parent=self)
if not profile_name or not profile_name.strip(): return
profile_name = profile_name.strip()
if profile_name in self.profiles:
if not messagebox.askyesno("Overwrite Profile", f"Profile '{profile_name}' already exists. Overwrite it?", parent=self): return
current_config = {
"carrier_frequency": self.vars["carrier_frequency"].get(),
"prf": self.vars["prf"].get(),
"duty_cycle": self.vars["duty_cycle"].get(),
"sample_rate": self.vars["sample_rate"].get(),
"beamwidth_az_deg": self.vars["beamwidth_az_deg"].get(),
"beamwidth_el_deg": self.vars["beamwidth_el_deg"].get(),
"scan_mode": self.vars["scan_mode"].get(),
"min_az_deg": self.vars["min_az_deg"].get(),
"max_az_deg": self.vars["max_az_deg"].get(),
"scan_speed_deg_s": self.vars["scan_speed_deg_s"].get()
}
self.profiles[profile_name] = current_config
if config_manager.save_profiles(self.profiles):
self.refresh_profile_list()
self.selected_profile.set(profile_name)
messagebox.showinfo("Profile Saved", f"Profile '{profile_name}' saved successfully.", parent=self)
else: messagebox.showerror("Error", "Could not save profiles to file.", parent=self)
def delete_profile(self):
"""Deletes the selected radar profile."""
profile_name = self.selected_profile.get()
if not profile_name:
messagebox.showwarning("No Profile Selected", "Please select a profile to delete.", parent=self) ; return
if messagebox.askyesno("Delete Profile", f"Are you sure you want to delete the profile '{profile_name}'?", parent=self):
if profile_name in self.profiles:
del self.profiles[profile_name]
if config_manager.save_profiles(self.profiles):
self.refresh_profile_list()
messagebox.showinfo("Profile Deleted", f"Profile '{profile_name}' has been deleted.", parent=self)
else: messagebox.showerror("Error", "Could not save profiles to file.", parent=self)
def refresh_profile_list(self):
"""Updates the profile combobox with current saved profiles."""
self.profile_combobox['values'] = sorted(list(self.profiles.keys()))
self.selected_profile.set('') # Clear selection
# --- Simulation and Plotting ---
def get_radar_config_from_gui(self) -> RadarConfig:
"""Constructs a RadarConfig object from current GUI values."""
antenna_cfg = AntennaConfig(
beamwidth_az_deg=self.vars["beamwidth_az_deg"].get(),
beamwidth_el_deg=self.vars["beamwidth_el_deg"].get()
)
scan_cfg = ScanConfig(
mode=self.vars["scan_mode"].get(),
min_az_deg=self.vars["min_az_deg"].get(),
max_az_deg=self.vars["max_az_deg"].get(),
scan_speed_deg_s=self.vars["scan_speed_deg_s"].get()
)
return RadarConfig(
carrier_frequency=self.vars["carrier_frequency"].get(),
prf=self.vars["prf"].get(),
duty_cycle=self.vars["duty_cycle"].get(),
sample_rate=self.vars["sample_rate"].get(),
antenna_config=antenna_cfg,
scan_config=scan_cfg
)
def get_targets_from_gui(self) -> list[Target]:
"""Extracts target data from the Treeview and returns a list of Target objects."""
targets = []
for item in self.target_table.get_children():
values = self.target_table.item(item)['values']
try:
float_values = [float(v) for v in values]
pos = np.array(float_values[0:3])
vel = np.array(float_values[3:6])
rcs = float_values[6]
targets.append(Target(initial_position=pos, velocity=vel, rcs=rcs))
except (ValueError, IndexError) as e:
messagebox.showwarning("Invalid Data", f"Skipping invalid target data: {values}. Error: {e}", parent=self)
return targets
def _simulation_generator(self, radar_cfg: RadarConfig, targets: list[Target], total_duration_s: float):
"""
Generator function to simulate the radar scan frame by frame (CPI by CPI).
Yields (current_az_deg, iq_data_cpi, num_frame).
"""
prf = radar_cfg.prf
pri = 1.0 / prf
num_pulses_cpi = self.vars["num_pulses_cpi"].get()
current_az_deg = radar_cfg.scan_config.min_az_deg if radar_cfg.scan_config.mode == 'sector' else 0.0
current_time_s = 0.0
frame_num = 0
while current_time_s < total_duration_s:
# Determine antenna pointing for this CPI
if radar_cfg.scan_config.mode == 'staring':
pass # current_az_deg remains 0.0 or initial_min_az_deg
elif radar_cfg.scan_config.mode == 'sector':
# Simple sweep back and forth
scan_range = radar_cfg.scan_config.max_az_deg - radar_cfg.scan_config.min_az_deg
if scan_range <= 0: # Handle invalid range
current_az_deg = radar_cfg.scan_config.min_az_deg
else:
cycle_time = scan_range / radar_cfg.scan_config.scan_speed_deg_s
# One full sweep (forward and back) takes 2*cycle_time
time_in_cycle = current_time_s % (2 * cycle_time)
if time_in_cycle < cycle_time:
# Sweeping forward
current_az_deg = radar_cfg.scan_config.min_az_deg + (time_in_cycle * radar_cfg.scan_config.scan_speed_deg_s)
else:
# Sweeping backward
current_az_deg = radar_cfg.scan_config.max_az_deg - ((time_in_cycle - cycle_time) * radar_cfg.scan_config.scan_speed_deg_s)
# Add 'circular' mode later if needed
# Generate IQ data for this CPI at the current antenna angle
iq_data_cpi = generate_iq_data(radar_cfg, targets, num_pulses_cpi, current_az_deg)
yield current_az_deg, iq_data_cpi, frame_num
current_time_s += num_pulses_cpi * pri
frame_num += 1
def start_simulation_animation(self):
"""Starts the animated simulation."""
self.stop_simulation_animation() # Stop any running animation first
self.generate_button.config(state=tk.DISABLED)
self.stop_button.config(state=tk.NORMAL)
self.update_idletasks() # Update GUI immediately
radar_cfg = self.get_radar_config_from_gui()
self.targets_in_simulation = self.get_targets_from_gui()
total_duration_s = self.vars["simulation_duration_s"].get()
if not self.targets_in_simulation:
messagebox.showwarning("No Targets", "Please add at least one target to simulate.", parent=self)
self.generate_button.config(state=tk.NORMAL)
self.stop_button.config(state=tk.DISABLED)
return
# Calculate maximum range for PPI plot based on max target range or unambiguous range
max_target_range = 0
if self.targets_in_simulation: max_target_range = max(np.linalg.norm(t.initial_position) for t in self.targets_in_simulation)
# Take the larger of the unambiguous range and the max target range, plus some margin
max_plot_range = max(radar_math.calculate_max_unambiguous_range(radar_cfg.prf), max_target_range) * 1.2
# Setup initial plot for animation
self.figure.clear()
# Plot 1: Range-Doppler Map
self.ax_rd = self.figure.add_subplot(121) # 1 row, 2 cols, 1st plot
self.ax_rd.set_title('Range-Doppler Map')
self.ax_rd.set_xlabel('Range (m)')
self.ax_rd.set_ylabel('Velocity (m/s)')
# Initialize RD map with dummy data (will be updated)
self.im_rd = self.ax_rd.imshow(np.zeros((self.vars["num_pulses_cpi"].get(), 100)), aspect='auto', cmap='jet', vmin=self.vars["min_db"].get(), vmax=self.vars["max_db"].get())
self.cbar_rd = self.figure.colorbar(self.im_rd, ax=self.ax_rd, label='Amplitude (dB)')
# Plot 2: PPI (Plan Position Indicator)
self.ax_ppi = self.figure.add_subplot(122, polar=True) # 1 row, 2 cols, 2nd plot, polar projection
self.ax_ppi.set_title('Antenna Scan & Targets (PPI)')
self.ax_ppi.set_theta_zero_location("N") # North at top
self.ax_ppi.set_theta_direction(-1) # Clockwise rotation
self.ax_ppi.set_ylim(0, max_plot_range) # Set range limit
self.ax_ppi.set_rlabel_position(-22.5) # Move radial labels away from spokes
self.ax_ppi.tick_params(axis='y', colors='lightgray') # Gray out range rings for clarity
# Plot targets on PPI
self.ppi_targets_plot = []
for target in self.targets_in_simulation:
x, y, _ = target.initial_position
r = np.linalg.norm([x, y])
theta = np.arctan2(y, x)
target_plot, = self.ax_ppi.plot(theta, r, 'o', color='red', markersize=8, label=f"Target (RCS={target.rcs})")
self.ppi_targets_plot.append(target_plot)
# Plot antenna beam on PPI
self.beam_patch = self.ax_ppi.fill_between(
np.radians([-0.5 * radar_cfg.antenna_config.beamwidth_az_deg, 0.5 * radar_cfg.antenna_config.beamwidth_az_deg]),
0, max_plot_range, color='cyan', alpha=0.2, linewidth=0
)
self.beam_line, = self.ax_ppi.plot([0, 0], [0, max_plot_range], color='cyan', linewidth=2)
self.figure.tight_layout()
self.canvas.draw()
# Initialize the generator
self.current_simulation_generator = self._simulation_generator(radar_cfg, self.targets_in_simulation, total_duration_s)
# Start animation
self.ani = animation.FuncAnimation(
self.figure,
self._update_plots,
frames=self.current_simulation_generator, # Pass the generator as frames
interval=100, # ms between frames (adjust for desired speed)
blit=False,
repeat=False, # Don't repeat the animation
cache_frame_data=False # Important for generators
)
self.canvas.draw()
def _update_plots(self, frame_data):
"""
Update function for matplotlib animation.
Receives frame_data (current_az_deg, iq_data_cpi, frame_num) from the generator.
"""
current_az_deg, iq_data_cpi, frame_num = frame_data
radar_cfg = self.get_radar_config_from_gui() # Re-fetch config to get latest values (e.g., sample_rate)
# --- Update Range-Doppler Map ---
if iq_data_cpi.size == 0:
self.im_rd.set_data(np.zeros((self.vars["num_pulses_cpi"].get(), 100))) # Update with empty data
self.ax_rd.set_title(f'Range-Doppler Map (Frame {frame_num}) - No Data')
else:
window = np.hanning(iq_data_cpi.shape[0])[:, np.newaxis]
iq_data_windowed = iq_data_cpi * window
range_doppler_map = np.fft.fftshift(np.fft.fft(iq_data_windowed, axis=0), axes=0)
range_doppler_map = np.fft.fftshift(np.fft.fft(range_doppler_map, axis=1), axes=1)
epsilon = 1e-10
range_doppler_map_db = 20 * np.log10(np.abs(range_doppler_map) + epsilon)
# Auto-scaling or fixed limits
vmin, vmax = None, None
if self.vars["auto_scale"].get():
if np.any(np.isfinite(range_doppler_map_db)):
vmin = np.nanmin(range_doppler_map_db[np.isfinite(range_doppler_map_db)])
vmax = np.nanmax(range_doppler_map_db)
self.vars["min_db"].set(round(vmin, 2))
self.vars["max_db"].set(round(vmax, 2))
else:
vmin, vmax = -100, 0
else:
vmin, vmax = self.vars["min_db"].get(), self.vars["max_db"].get()
self.im_rd.set_data(range_doppler_map_db)
self.im_rd.set_clim(vmin=vmin, vmax=vmax) # Update color limits
# Update extents for axes if necessary (e.g., if sample_rate changed mid-sim)
doppler_freq_axis = np.fft.fftshift(np.fft.fftfreq(iq_data_cpi.shape[0], d=1.0/radar_cfg.prf))
velocity_axis = doppler_freq_axis * (c / radar_cfg.carrier_frequency) / 2
range_axis_samples = iq_data_cpi.shape[1]
range_axis_m = np.arange(range_axis_samples) * c / (2 * radar_cfg.sample_rate)
self.im_rd.set_extent([range_axis_m[0], range_axis_m[-1], velocity_axis[0], velocity_axis[-1]])
self.ax_rd.set_title(f'Range-Doppler Map (Frame {frame_num})')
# --- Update PPI Plot ---
current_az_rad = np.deg2rad(current_az_deg)
beamwidth_rad = np.deg2rad(radar_cfg.antenna_config.beamwidth_az_deg)
# Update beam patch
theta_beam = np.linspace(current_az_rad - beamwidth_rad / 2, current_az_rad + beamwidth_rad / 2, 50)
max_plot_range = self.ax_ppi.get_ylim()[1] # Get current max range of PPI plot
self.beam_patch.remove() # Remove old patch
self.beam_patch = self.ax_ppi.fill_between(theta_beam, 0, max_plot_range, color='cyan', alpha=0.2, linewidth=0)
# Update beam centerline
self.beam_line.set_xdata([current_az_rad, current_az_rad])
# --- Update Analysis Text ---
self._update_analysis_text(radar_cfg, self.targets_in_simulation, current_az_deg, iq_data_cpi)
return self.im_rd, self.beam_patch, self.beam_line # Return artists that were modified
def _update_analysis_text(self, radar_cfg: RadarConfig, targets: list[Target], current_az_deg: float, iq_data_cpi: np.ndarray):
"""Generates and updates the simulation analysis text."""
report = []
# Radar Limits
max_range = radar_math.calculate_max_unambiguous_range(radar_cfg.prf)
max_vel = radar_math.calculate_max_unambiguous_velocity(radar_cfg.carrier_frequency, radar_cfg.prf)
report.append(f"--- Radar Configuration Analysis ---")
report.append(f"Max Unambiguous Range: {max_range:,.0f} m")
report.append(f"Max Unambiguous Velocity: \u00b1{max_vel:,.1f} m/s")
report.append(f"Current Antenna Azimuth: {current_az_deg:,.1f} deg")
# Dwell Time & Pulses on Target
if radar_cfg.scan_config.mode == 'staring' or radar_cfg.scan_config.scan_speed_deg_s <= 0:
report.append("Dwell Time: N/A (Staring Mode)")
report.append("Pulses on Target: N/A (Staring Mode)")
else:
dwell_time = radar_math.calculate_dwell_time(radar_cfg.antenna_config.beamwidth_az_deg, radar_cfg.scan_config.scan_speed_deg_s)
pulses_on_target = radar_math.calculate_pulses_on_target(dwell_time, radar_cfg.prf)
report.append(f"Calculated Dwell Time: {dwell_time * 1e3:,.2f} ms")
report.append(f"Calculated Pulses on Target: {pulses_on_target:,}")
if pulses_on_target < self.vars["num_pulses_cpi"].get():
report.append("WARNING: Pulses per CPI > Pulses on Target (Potential Doppler Resolution Loss!)")
report.append(f"\n--- Target Analysis (relative to current antenna pointing) ---")
if not targets:
report.append("No targets defined.")
else:
for i, target in enumerate(targets):
x, y, z = target.initial_position
range_to_target = np.linalg.norm(target.initial_position) # Initial range
target_az_deg = np.rad2deg(np.arctan2(y, x))
az_error = target_az_deg - current_az_deg
report.append(f"\nTarget {i+1} (RCS={target.rcs:.1f} m^2):")
report.append(f" Initial Range: {range_to_target:,.0f} m")
report.append(f" Initial Radial Velocity: {np.dot(target.velocity, target.initial_position / range_to_target):.1f} m/s")
report.append(f" Angle from Boresight (Az): {az_error:,.1f} deg")
gain_factor = radar_math.calculate_gaussian_gain(az_error, radar_cfg.antenna_config.beamwidth_az_deg)
report.append(f" Antenna Gain Factor: {gain_factor:.2f}")
if range_to_target > max_range:
report.append(f" WARNING: Target range {range_to_target:,.0f} m > Max Unambiguous Range {max_range:,.0f} m (Range Ambiguity!)")
if abs(np.dot(target.velocity, target.initial_position / range_to_target)) > max_vel:
report.append(f" WARNING: Target radial velocity > Max Unambiguous Velocity {max_vel:,.1f} m/s (Doppler Ambiguity!)")
if gain_factor < 0.1: # Arbitrary threshold for "weak" detection
report.append(f" WARNING: Target is far from beam center (Gain Factor {gain_factor:.2f}) - may be weakly detected or missed.")
self.analysis_text.config(state=tk.NORMAL) # Enable editing
self.analysis_text.delete(1.0, tk.END) # Clear previous content
self.analysis_text.insert(tk.END, "\n".join(report))
self.analysis_text.config(state=tk.DISABLED) # Disable editing
self.analysis_text.see(tk.END) # Scroll to bottom
def stop_simulation_animation(self):
"""Stops the currently running simulation animation."""
if self.ani and self.ani.event_source is not None:
self.ani.event_source.stop()
self.ani = None # Set to None regardless
self.current_simulation_generator = None
self.generate_button.config(state=tk.NORMAL)
self.stop_button.config(state=tk.DISABLED)
# Clear plots after stopping
self.figure.clear()
self.canvas.draw()
self.analysis_text.config(state=tk.NORMAL)
self.analysis_text.delete(1.0, tk.END)
self.analysis_text.insert(tk.END, "Simulation stopped or not started.")
self.analysis_text.config(state=tk.DISABLED)
def start_gui():
"""Entry point to launch the Tkinter GUI application."""
app = App()
app.mainloop()